![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfovd | Structured version Visualization version GIF version |
Description: Deduction version of bound-variable hypothesis builder nfov 7432. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfovd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfovd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐹) |
nfovd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfovd | ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7405 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) | |
2 | nfovd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐹) | |
3 | nfovd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | nfovd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
5 | 3, 4 | nfopd 4883 | . . 3 ⊢ (𝜑 → Ⅎ𝑥⟨𝐴, 𝐵⟩) |
6 | 2, 5 | nffvd 6894 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝐹‘⟨𝐴, 𝐵⟩)) |
7 | 1, 6 | nfcxfrd 2894 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2875 ⟨cop 4627 ‘cfv 6534 (class class class)co 7402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-iota 6486 df-fv 6542 df-ov 7405 |
This theorem is referenced by: nfov 7432 nfnegd 11454 |
Copyright terms: Public domain | W3C validator |