MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfovd Structured version   Visualization version   GIF version

Theorem nfovd 7175
Description: Deduction version of bound-variable hypothesis builder nfov 7176. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfovd.2 (𝜑𝑥𝐴)
nfovd.3 (𝜑𝑥𝐹)
nfovd.4 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfovd (𝜑𝑥(𝐴𝐹𝐵))

Proof of Theorem nfovd
StepHypRef Expression
1 df-ov 7149 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 nfovd.3 . . 3 (𝜑𝑥𝐹)
3 nfovd.2 . . . 4 (𝜑𝑥𝐴)
4 nfovd.4 . . . 4 (𝜑𝑥𝐵)
53, 4nfopd 4807 . . 3 (𝜑𝑥𝐴, 𝐵⟩)
62, 5nffvd 6671 . 2 (𝜑𝑥(𝐹‘⟨𝐴, 𝐵⟩))
71, 6nfcxfrd 2981 1 (𝜑𝑥(𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnfc 2962  cop 4556  cfv 6344  (class class class)co 7146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-iota 6303  df-fv 6352  df-ov 7149
This theorem is referenced by:  nfov  7176  nfnegd  10875
  Copyright terms: Public domain W3C validator