| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfovd | Structured version Visualization version GIF version | ||
| Description: Deduction version of bound-variable hypothesis builder nfov 7376. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nfovd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfovd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐹) |
| nfovd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfovd | ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7349 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | nfovd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐹) | |
| 3 | nfovd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | nfovd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 5 | 3, 4 | nfopd 4839 | . . 3 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
| 6 | 2, 5 | nffvd 6834 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝐹‘〈𝐴, 𝐵〉)) |
| 7 | 1, 6 | nfcxfrd 2893 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnfc 2879 〈cop 4579 ‘cfv 6481 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: nfov 7376 nfnegd 11355 |
| Copyright terms: Public domain | W3C validator |