| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfovd | Structured version Visualization version GIF version | ||
| Description: Deduction version of bound-variable hypothesis builder nfov 7417. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nfovd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfovd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐹) |
| nfovd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfovd | ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7390 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | nfovd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐹) | |
| 3 | nfovd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | nfovd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 5 | 3, 4 | nfopd 4854 | . . 3 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
| 6 | 2, 5 | nffvd 6870 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝐹‘〈𝐴, 𝐵〉)) |
| 7 | 1, 6 | nfcxfrd 2890 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnfc 2876 〈cop 4595 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: nfov 7417 nfnegd 11416 |
| Copyright terms: Public domain | W3C validator |