MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfovd Structured version   Visualization version   GIF version

Theorem nfovd 7437
Description: Deduction version of bound-variable hypothesis builder nfov 7438. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfovd.2 (𝜑𝑥𝐴)
nfovd.3 (𝜑𝑥𝐹)
nfovd.4 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfovd (𝜑𝑥(𝐴𝐹𝐵))

Proof of Theorem nfovd
StepHypRef Expression
1 df-ov 7411 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 nfovd.3 . . 3 (𝜑𝑥𝐹)
3 nfovd.2 . . . 4 (𝜑𝑥𝐴)
4 nfovd.4 . . . 4 (𝜑𝑥𝐵)
53, 4nfopd 4890 . . 3 (𝜑𝑥𝐴, 𝐵⟩)
62, 5nffvd 6903 . 2 (𝜑𝑥(𝐹‘⟨𝐴, 𝐵⟩))
71, 6nfcxfrd 2902 1 (𝜑𝑥(𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnfc 2883  cop 4634  cfv 6543  (class class class)co 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411
This theorem is referenced by:  nfov  7438  nfnegd  11454
  Copyright terms: Public domain W3C validator