Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnegd | Structured version Visualization version GIF version |
Description: Deduction version of nfneg 11200. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfnegd | ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11191 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | nfcvd 2909 | . . 3 ⊢ (𝜑 → Ⅎ𝑥0) | |
3 | nfcvd 2909 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 − ) | |
4 | nfnegd.1 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 2, 3, 4 | nfovd 7297 | . 2 ⊢ (𝜑 → Ⅎ𝑥(0 − 𝐴)) |
6 | 1, 5 | nfcxfrd 2907 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2888 (class class class)co 7268 0cc0 10855 − cmin 11188 -cneg 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-neg 11191 |
This theorem is referenced by: nfneg 11200 nfxnegd 42935 |
Copyright terms: Public domain | W3C validator |