MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnegd Structured version   Visualization version   GIF version

Theorem nfnegd 11416
Description: Deduction version of nfneg 11417. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfnegd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfnegd (𝜑𝑥-𝐴)

Proof of Theorem nfnegd
StepHypRef Expression
1 df-neg 11408 . 2 -𝐴 = (0 − 𝐴)
2 nfcvd 2892 . . 3 (𝜑𝑥0)
3 nfcvd 2892 . . 3 (𝜑𝑥 − )
4 nfnegd.1 . . 3 (𝜑𝑥𝐴)
52, 3, 4nfovd 7416 . 2 (𝜑𝑥(0 − 𝐴))
61, 5nfcxfrd 2890 1 (𝜑𝑥-𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnfc 2876  (class class class)co 7387  0cc0 11068  cmin 11405  -cneg 11406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-neg 11408
This theorem is referenced by:  nfneg  11417  nfxnegd  45437
  Copyright terms: Public domain W3C validator