| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnegd | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfneg 11359. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfnegd | ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11350 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | nfcvd 2892 | . . 3 ⊢ (𝜑 → Ⅎ𝑥0) | |
| 3 | nfcvd 2892 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 − ) | |
| 4 | nfnegd.1 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 2, 3, 4 | nfovd 7378 | . 2 ⊢ (𝜑 → Ⅎ𝑥(0 − 𝐴)) |
| 6 | 1, 5 | nfcxfrd 2890 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnfc 2876 (class class class)co 7349 0cc0 11009 − cmin 11347 -cneg 11348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-neg 11350 |
| This theorem is referenced by: nfneg 11359 nfxnegd 45424 |
| Copyright terms: Public domain | W3C validator |