![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnegd | Structured version Visualization version GIF version |
Description: Deduction version of nfneg 11532. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfnegd | ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11523 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | nfcvd 2909 | . . 3 ⊢ (𝜑 → Ⅎ𝑥0) | |
3 | nfcvd 2909 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 − ) | |
4 | nfnegd.1 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 2, 3, 4 | nfovd 7477 | . 2 ⊢ (𝜑 → Ⅎ𝑥(0 − 𝐴)) |
6 | 1, 5 | nfcxfrd 2907 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2893 (class class class)co 7448 0cc0 11184 − cmin 11520 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 |
This theorem is referenced by: nfneg 11532 nfxnegd 45356 |
Copyright terms: Public domain | W3C validator |