Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem51 Structured version   Visualization version   GIF version

Theorem stoweidlem51 46042
Description: There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem51.1 𝑖𝜑
stoweidlem51.2 𝑡𝜑
stoweidlem51.3 𝑤𝜑
stoweidlem51.4 𝑤𝑉
stoweidlem51.5 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem51.6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem51.7 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem51.8 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem51.9 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem51.10 (𝜑𝑀 ∈ ℕ)
stoweidlem51.11 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem51.12 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem51.13 ((𝜑𝑤𝑉) → 𝑤𝑇)
stoweidlem51.14 (𝜑𝐷 ran 𝑊)
stoweidlem51.15 (𝜑𝐷𝑇)
stoweidlem51.16 (𝜑𝐵𝑇)
stoweidlem51.17 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
stoweidlem51.18 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
stoweidlem51.19 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem51.20 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem51.21 (𝜑𝑇 ∈ V)
stoweidlem51.22 (𝜑𝐸 ∈ ℝ+)
stoweidlem51.23 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem51 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
Distinct variable groups:   𝑓,𝑔,,𝑡,𝐴   𝑓,𝑖,𝑀,,𝑡   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,,𝑡   𝑈,𝑓,𝑔,,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑔,𝑀   𝑤,𝑖,𝑇   𝐵,𝑖   𝐷,𝑖   𝑖,𝐸   𝑈,𝑖   𝑖,𝑊,𝑤   𝑥,𝑡,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝑇   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑡,,𝑖)   𝐴(𝑤,𝑖)   𝐵(𝑤,𝑡,𝑓,𝑔,)   𝐷(𝑤,𝑡,𝑓,𝑔,)   𝑃(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑈(𝑥,𝑤)   𝐸(𝑤,𝑡,𝑓,𝑔,)   𝐹(𝑥,𝑤,𝑡,,𝑖)   𝑀(𝑥,𝑤)   𝑉(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑊(𝑥,𝑡,𝑓,𝑔,)   𝑋(𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑌(𝑥,𝑤,𝑡,,𝑖)   𝑍(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem51
StepHypRef Expression
1 stoweidlem51.5 . . . 4 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
2 ssrab2 4039 . . . 4 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ⊆ 𝐴
31, 2eqsstri 3990 . . 3 𝑌𝐴
4 stoweidlem51.6 . . . 4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
5 stoweidlem51.7 . . . 4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
6 1zzd 12540 . . . . 5 (𝜑 → 1 ∈ ℤ)
7 stoweidlem51.10 . . . . . 6 (𝜑𝑀 ∈ ℕ)
87nnzd 12532 . . . . 5 (𝜑𝑀 ∈ ℤ)
97nnge1d 12210 . . . . 5 (𝜑 → 1 ≤ 𝑀)
107nnred 12177 . . . . . 6 (𝜑𝑀 ∈ ℝ)
1110leidd 11720 . . . . 5 (𝜑𝑀𝑀)
126, 8, 8, 9, 11elfzd 13452 . . . 4 (𝜑𝑀 ∈ (1...𝑀))
13 stoweidlem51.12 . . . 4 (𝜑𝑈:(1...𝑀)⟶𝑌)
14 stoweidlem51.2 . . . . 5 𝑡𝜑
15 eqid 2729 . . . . 5 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
16 stoweidlem51.20 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
17 stoweidlem51.19 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
1814, 1, 15, 16, 17stoweidlem16 46007 . . . 4 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
19 stoweidlem51.21 . . . 4 (𝜑𝑇 ∈ V)
204, 5, 12, 13, 18, 19fmulcl 45572 . . 3 (𝜑𝑋𝑌)
213, 20sselid 3941 . 2 (𝜑𝑋𝐴)
221eleq2i 2820 . . . . . . 7 (𝑋𝑌𝑋 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
23 nfcv 2891 . . . . . . . . . . 11 1
24 nfrab1 3423 . . . . . . . . . . . . . 14 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
251, 24nfcxfr 2889 . . . . . . . . . . . . 13 𝑌
26 nfcv 2891 . . . . . . . . . . . . 13 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
2725, 25, 26nfmpo 7451 . . . . . . . . . . . 12 (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
284, 27nfcxfr 2889 . . . . . . . . . . 11 𝑃
29 nfcv 2891 . . . . . . . . . . 11 𝑈
3023, 28, 29nfseq 13952 . . . . . . . . . 10 seq1(𝑃, 𝑈)
31 nfcv 2891 . . . . . . . . . 10 𝑀
3230, 31nffv 6850 . . . . . . . . 9 (seq1(𝑃, 𝑈)‘𝑀)
335, 32nfcxfr 2889 . . . . . . . 8 𝑋
34 nfcv 2891 . . . . . . . 8 𝐴
35 nfcv 2891 . . . . . . . . 9 𝑇
36 nfcv 2891 . . . . . . . . . . 11 0
37 nfcv 2891 . . . . . . . . . . 11
38 nfcv 2891 . . . . . . . . . . . 12 𝑡
3933, 38nffv 6850 . . . . . . . . . . 11 (𝑋𝑡)
4036, 37, 39nfbr 5149 . . . . . . . . . 10 0 ≤ (𝑋𝑡)
4139, 37, 23nfbr 5149 . . . . . . . . . 10 (𝑋𝑡) ≤ 1
4240, 41nfan 1899 . . . . . . . . 9 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)
4335, 42nfralw 3283 . . . . . . . 8 𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)
44 nfcv 2891 . . . . . . . . . . . . 13 𝑡1
45 nfra1 3259 . . . . . . . . . . . . . . . . 17 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
46 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑡𝐴
4745, 46nfrabw 3440 . . . . . . . . . . . . . . . 16 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
481, 47nfcxfr 2889 . . . . . . . . . . . . . . 15 𝑡𝑌
49 nfmpt1 5201 . . . . . . . . . . . . . . 15 𝑡(𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
5048, 48, 49nfmpo 7451 . . . . . . . . . . . . . 14 𝑡(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
514, 50nfcxfr 2889 . . . . . . . . . . . . 13 𝑡𝑃
52 nfcv 2891 . . . . . . . . . . . . 13 𝑡𝑈
5344, 51, 52nfseq 13952 . . . . . . . . . . . 12 𝑡seq1(𝑃, 𝑈)
54 nfcv 2891 . . . . . . . . . . . 12 𝑡𝑀
5553, 54nffv 6850 . . . . . . . . . . 11 𝑡(seq1(𝑃, 𝑈)‘𝑀)
565, 55nfcxfr 2889 . . . . . . . . . 10 𝑡𝑋
5756nfeq2 2909 . . . . . . . . 9 𝑡 = 𝑋
58 fveq1 6839 . . . . . . . . . . 11 ( = 𝑋 → (𝑡) = (𝑋𝑡))
5958breq2d 5114 . . . . . . . . . 10 ( = 𝑋 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑋𝑡)))
6058breq1d 5112 . . . . . . . . . 10 ( = 𝑋 → ((𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
6159, 60anbi12d 632 . . . . . . . . 9 ( = 𝑋 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6257, 61ralbid 3248 . . . . . . . 8 ( = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6333, 34, 43, 62elrabf 3652 . . . . . . 7 (𝑋 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↔ (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6422, 63bitri 275 . . . . . 6 (𝑋𝑌 ↔ (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6520, 64sylib 218 . . . . 5 (𝜑 → (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6665simprd 495 . . . 4 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
67 stoweidlem51.1 . . . . 5 𝑖𝜑
68 stoweidlem51.8 . . . . 5 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
69 stoweidlem51.9 . . . . 5 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
70 stoweidlem51.11 . . . . 5 (𝜑𝑊:(1...𝑀)⟶𝑉)
71 stoweidlem51.14 . . . . 5 (𝜑𝐷 ran 𝑊)
72 stoweidlem51.15 . . . . 5 (𝜑𝐷𝑇)
73 nfv 1914 . . . . . . 7 𝑡 𝑖 ∈ (1...𝑀)
7414, 73nfan 1899 . . . . . 6 𝑡(𝜑𝑖 ∈ (1...𝑀))
7513ffvelcdmda 7038 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
76 fveq1 6839 . . . . . . . . . . . . . . . . 17 ( = (𝑈𝑖) → (𝑡) = ((𝑈𝑖)‘𝑡))
7776breq2d 5114 . . . . . . . . . . . . . . . 16 ( = (𝑈𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝑈𝑖)‘𝑡)))
7876breq1d 5112 . . . . . . . . . . . . . . . 16 ( = (𝑈𝑖) → ((𝑡) ≤ 1 ↔ ((𝑈𝑖)‘𝑡) ≤ 1))
7977, 78anbi12d 632 . . . . . . . . . . . . . . 15 ( = (𝑈𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8079ralbidv 3156 . . . . . . . . . . . . . 14 ( = (𝑈𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8180, 1elrab2 3659 . . . . . . . . . . . . 13 ((𝑈𝑖) ∈ 𝑌 ↔ ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8281simplbi 497 . . . . . . . . . . . 12 ((𝑈𝑖) ∈ 𝑌 → (𝑈𝑖) ∈ 𝐴)
8375, 82syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝐴)
84 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (𝑓𝐴 ↔ (𝑈𝑖) ∈ 𝐴))
8584anbi2d 630 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝐴)))
86 feq1 6648 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
8785, 86imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)))
8816a1i 11 . . . . . . . . . . . . 13 (𝑓𝐴 → ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ))
8987, 88vtoclga 3540 . . . . . . . . . . . 12 ((𝑈𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ))
9089anabsi7 671 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)
9183, 90syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
9291adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝑈𝑖):𝑇⟶ℝ)
9370ffvelcdmda 7038 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊𝑖) ∈ 𝑉)
94 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
9594, 93jca 511 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑊𝑖) ∈ 𝑉))
96 stoweidlem51.3 . . . . . . . . . . . . . 14 𝑤𝜑
97 stoweidlem51.4 . . . . . . . . . . . . . . 15 𝑤𝑉
9897nfel2 2910 . . . . . . . . . . . . . 14 𝑤(𝑊𝑖) ∈ 𝑉
9996, 98nfan 1899 . . . . . . . . . . . . 13 𝑤(𝜑 ∧ (𝑊𝑖) ∈ 𝑉)
100 nfv 1914 . . . . . . . . . . . . 13 𝑤(𝑊𝑖) ⊆ 𝑇
10199, 100nfim 1896 . . . . . . . . . . . 12 𝑤((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇)
102 eleq1 2816 . . . . . . . . . . . . . 14 (𝑤 = (𝑊𝑖) → (𝑤𝑉 ↔ (𝑊𝑖) ∈ 𝑉))
103102anbi2d 630 . . . . . . . . . . . . 13 (𝑤 = (𝑊𝑖) → ((𝜑𝑤𝑉) ↔ (𝜑 ∧ (𝑊𝑖) ∈ 𝑉)))
104 sseq1 3969 . . . . . . . . . . . . 13 (𝑤 = (𝑊𝑖) → (𝑤𝑇 ↔ (𝑊𝑖) ⊆ 𝑇))
105103, 104imbi12d 344 . . . . . . . . . . . 12 (𝑤 = (𝑊𝑖) → (((𝜑𝑤𝑉) → 𝑤𝑇) ↔ ((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇)))
106 stoweidlem51.13 . . . . . . . . . . . 12 ((𝜑𝑤𝑉) → 𝑤𝑇)
107101, 105, 106vtoclg1f 3533 . . . . . . . . . . 11 ((𝑊𝑖) ∈ 𝑉 → ((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇))
10893, 95, 107sylc 65 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊𝑖) ⊆ 𝑇)
109108sselda 3943 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑡𝑇)
11092, 109ffvelcdmd 7039 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
111 stoweidlem51.22 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
112111rpred 12971 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ)
113112ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝐸 ∈ ℝ)
11410ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑀 ∈ ℝ)
1157nnne0d 12212 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
116115ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑀 ≠ 0)
117113, 114, 116redivcld 11986 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝐸 / 𝑀) ∈ ℝ)
118 stoweidlem51.17 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
119118r19.21bi 3227 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
120 1red 11151 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
121 0lt1 11676 . . . . . . . . . . . . 13 0 < 1
122121a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
1237nngt0d 12211 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑀)
124111rpregt0d 12977 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
125 lediv2 12049 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
126120, 122, 10, 123, 124, 125syl221anc 1383 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
1279, 126mpbid 232 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1))
128111rpcnd 12973 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
129128div1d 11926 . . . . . . . . . 10 (𝜑 → (𝐸 / 1) = 𝐸)
130127, 129breqtrd 5128 . . . . . . . . 9 (𝜑 → (𝐸 / 𝑀) ≤ 𝐸)
131130ad2antrr 726 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝐸 / 𝑀) ≤ 𝐸)
132110, 117, 113, 119, 131ltletrd 11310 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
133132ex 412 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑡 ∈ (𝑊𝑖) → ((𝑈𝑖)‘𝑡) < 𝐸))
13474, 133ralrimi 3233 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
13567, 14, 1, 4, 5, 68, 69, 7, 70, 13, 71, 72, 134, 19, 16, 17, 111stoweidlem48 46039 . . . 4 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
136 stoweidlem51.18 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
137 stoweidlem51.23 . . . . 5 (𝜑𝐸 < (1 / 3))
1383sseli 3939 . . . . . 6 (𝑓𝑌𝑓𝐴)
139138, 16sylan2 593 . . . . 5 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
140 stoweidlem51.16 . . . . 5 (𝜑𝐵𝑇)
14167, 14, 48, 4, 5, 68, 69, 7, 13, 136, 111, 137, 139, 18, 19, 140stoweidlem42 46033 . . . 4 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
14266, 135, 1413jca 1128 . . 3 (𝜑 → (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))
14321, 142jca 511 . 2 (𝜑 → (𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))))
144 eleq1 2816 . . . 4 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
14556nfeq2 2909 . . . . . 6 𝑡 𝑥 = 𝑋
146 fveq1 6839 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥𝑡) = (𝑋𝑡))
147146breq2d 5114 . . . . . . 7 (𝑥 = 𝑋 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝑋𝑡)))
148146breq1d 5112 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
149147, 148anbi12d 632 . . . . . 6 (𝑥 = 𝑋 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
150145, 149ralbid 3248 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
151146breq1d 5112 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑡) < 𝐸 ↔ (𝑋𝑡) < 𝐸))
152145, 151ralbid 3248 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝐷 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝐷 (𝑋𝑡) < 𝐸))
153146breq2d 5114 . . . . . 6 (𝑥 = 𝑋 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝑋𝑡)))
154145, 153ralbid 3248 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))
155150, 152, 1543anbi123d 1438 . . . 4 (𝑥 = 𝑋 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))))
156144, 155anbi12d 632 . . 3 (𝑥 = 𝑋 → ((𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))) ↔ (𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))))
157156spcegv 3560 . 2 (𝑋𝐴 → ((𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))) → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))))
15821, 143, 157sylc 65 1 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  {crab 3402  Vcvv 3444  wss 3911   cuni 4867   class class class wbr 5102  cmpt 5183  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  3c3 12218  +crp 12927  ...cfz 13444  seqcseq 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003
This theorem is referenced by:  stoweidlem54  46045
  Copyright terms: Public domain W3C validator