Proof of Theorem stoweidlem51
Step | Hyp | Ref
| Expression |
1 | | stoweidlem51.5 |
. . . 4
⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
2 | | ssrab2 4013 |
. . . 4
⊢ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} ⊆ 𝐴 |
3 | 1, 2 | eqsstri 3955 |
. . 3
⊢ 𝑌 ⊆ 𝐴 |
4 | | stoweidlem51.6 |
. . . 4
⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
5 | | stoweidlem51.7 |
. . . 4
⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) |
6 | | 1zzd 12351 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
7 | | stoweidlem51.10 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
8 | 7 | nnzd 12425 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
9 | 7 | nnge1d 12021 |
. . . . 5
⊢ (𝜑 → 1 ≤ 𝑀) |
10 | 7 | nnred 11988 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) |
11 | 10 | leidd 11541 |
. . . . 5
⊢ (𝜑 → 𝑀 ≤ 𝑀) |
12 | 6, 8, 8, 9, 11 | elfzd 13247 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (1...𝑀)) |
13 | | stoweidlem51.12 |
. . . 4
⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) |
14 | | stoweidlem51.2 |
. . . . 5
⊢
Ⅎ𝑡𝜑 |
15 | | eqid 2738 |
. . . . 5
⊢ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) |
16 | | stoweidlem51.20 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
17 | | stoweidlem51.19 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
18 | 14, 1, 15, 16, 17 | stoweidlem16 43557 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) |
19 | | stoweidlem51.21 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ V) |
20 | 4, 5, 12, 13, 18, 19 | fmulcl 43122 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑌) |
21 | 3, 20 | sselid 3919 |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
22 | 1 | eleq2i 2830 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑌 ↔ 𝑋 ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)}) |
23 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎℎ1 |
24 | | nfrab1 3317 |
. . . . . . . . . . . . . 14
⊢
Ⅎℎ{ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
25 | 1, 24 | nfcxfr 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ𝑌 |
26 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ(𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) |
27 | 25, 25, 26 | nfmpo 7357 |
. . . . . . . . . . . 12
⊢
Ⅎℎ(𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
28 | 4, 27 | nfcxfr 2905 |
. . . . . . . . . . 11
⊢
Ⅎℎ𝑃 |
29 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎℎ𝑈 |
30 | 23, 28, 29 | nfseq 13731 |
. . . . . . . . . 10
⊢
Ⅎℎseq1(𝑃, 𝑈) |
31 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎℎ𝑀 |
32 | 30, 31 | nffv 6784 |
. . . . . . . . 9
⊢
Ⅎℎ(seq1(𝑃, 𝑈)‘𝑀) |
33 | 5, 32 | nfcxfr 2905 |
. . . . . . . 8
⊢
Ⅎℎ𝑋 |
34 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎℎ𝐴 |
35 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎℎ𝑇 |
36 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎℎ0 |
37 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎℎ
≤ |
38 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎℎ𝑡 |
39 | 33, 38 | nffv 6784 |
. . . . . . . . . . 11
⊢
Ⅎℎ(𝑋‘𝑡) |
40 | 36, 37, 39 | nfbr 5121 |
. . . . . . . . . 10
⊢
Ⅎℎ0 ≤ (𝑋‘𝑡) |
41 | 39, 37, 23 | nfbr 5121 |
. . . . . . . . . 10
⊢
Ⅎℎ(𝑋‘𝑡) ≤ 1 |
42 | 40, 41 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎℎ(0 ≤
(𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) |
43 | 35, 42 | nfralw 3151 |
. . . . . . . 8
⊢
Ⅎℎ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) |
44 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡1 |
45 | | nfra1 3144 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) |
46 | | nfcv 2907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡𝐴 |
47 | 45, 46 | nfrabw 3318 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡{ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
48 | 1, 47 | nfcxfr 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡𝑌 |
49 | | nfmpt1 5182 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) |
50 | 48, 48, 49 | nfmpo 7357 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
51 | 4, 50 | nfcxfr 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡𝑃 |
52 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡𝑈 |
53 | 44, 51, 52 | nfseq 13731 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡seq1(𝑃, 𝑈) |
54 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡𝑀 |
55 | 53, 54 | nffv 6784 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(seq1(𝑃, 𝑈)‘𝑀) |
56 | 5, 55 | nfcxfr 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑡𝑋 |
57 | 56 | nfeq2 2924 |
. . . . . . . . 9
⊢
Ⅎ𝑡 ℎ = 𝑋 |
58 | | fveq1 6773 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑋 → (ℎ‘𝑡) = (𝑋‘𝑡)) |
59 | 58 | breq2d 5086 |
. . . . . . . . . 10
⊢ (ℎ = 𝑋 → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ (𝑋‘𝑡))) |
60 | 58 | breq1d 5084 |
. . . . . . . . . 10
⊢ (ℎ = 𝑋 → ((ℎ‘𝑡) ≤ 1 ↔ (𝑋‘𝑡) ≤ 1)) |
61 | 59, 60 | anbi12d 631 |
. . . . . . . . 9
⊢ (ℎ = 𝑋 → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
62 | 57, 61 | ralbid 3161 |
. . . . . . . 8
⊢ (ℎ = 𝑋 → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
63 | 33, 34, 43, 62 | elrabf 3620 |
. . . . . . 7
⊢ (𝑋 ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
64 | 22, 63 | bitri 274 |
. . . . . 6
⊢ (𝑋 ∈ 𝑌 ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
65 | 20, 64 | sylib 217 |
. . . . 5
⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
66 | 65 | simprd 496 |
. . . 4
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1)) |
67 | | stoweidlem51.1 |
. . . . 5
⊢
Ⅎ𝑖𝜑 |
68 | | stoweidlem51.8 |
. . . . 5
⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
69 | | stoweidlem51.9 |
. . . . 5
⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) |
70 | | stoweidlem51.11 |
. . . . 5
⊢ (𝜑 → 𝑊:(1...𝑀)⟶𝑉) |
71 | | stoweidlem51.14 |
. . . . 5
⊢ (𝜑 → 𝐷 ⊆ ∪ ran
𝑊) |
72 | | stoweidlem51.15 |
. . . . 5
⊢ (𝜑 → 𝐷 ⊆ 𝑇) |
73 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑡 𝑖 ∈ (1...𝑀) |
74 | 14, 73 | nfan 1902 |
. . . . . 6
⊢
Ⅎ𝑡(𝜑 ∧ 𝑖 ∈ (1...𝑀)) |
75 | 13 | ffvelrnda 6961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖) ∈ 𝑌) |
76 | | fveq1 6773 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑈‘𝑖) → (ℎ‘𝑡) = ((𝑈‘𝑖)‘𝑡)) |
77 | 76 | breq2d 5086 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑈‘𝑖) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝑈‘𝑖)‘𝑡))) |
78 | 76 | breq1d 5084 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑈‘𝑖) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝑈‘𝑖)‘𝑡) ≤ 1)) |
79 | 77, 78 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑈‘𝑖) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1))) |
80 | 79 | ralbidv 3112 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑈‘𝑖) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1))) |
81 | 80, 1 | elrab2 3627 |
. . . . . . . . . . . . 13
⊢ ((𝑈‘𝑖) ∈ 𝑌 ↔ ((𝑈‘𝑖) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1))) |
82 | 81 | simplbi 498 |
. . . . . . . . . . . 12
⊢ ((𝑈‘𝑖) ∈ 𝑌 → (𝑈‘𝑖) ∈ 𝐴) |
83 | 75, 82 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖) ∈ 𝐴) |
84 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑈‘𝑖) → (𝑓 ∈ 𝐴 ↔ (𝑈‘𝑖) ∈ 𝐴)) |
85 | 84 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑈‘𝑖) → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴))) |
86 | | feq1 6581 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑈‘𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘𝑖):𝑇⟶ℝ)) |
87 | 85, 86 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑈‘𝑖) → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴) → (𝑈‘𝑖):𝑇⟶ℝ))) |
88 | 16 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ 𝐴 → ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ)) |
89 | 87, 88 | vtoclga 3513 |
. . . . . . . . . . . 12
⊢ ((𝑈‘𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴) → (𝑈‘𝑖):𝑇⟶ℝ)) |
90 | 89 | anabsi7 668 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴) → (𝑈‘𝑖):𝑇⟶ℝ) |
91 | 83, 90 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖):𝑇⟶ℝ) |
92 | 91 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → (𝑈‘𝑖):𝑇⟶ℝ) |
93 | 70 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑊‘𝑖) ∈ 𝑉) |
94 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝜑) |
95 | 94, 93 | jca 512 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉)) |
96 | | stoweidlem51.3 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤𝜑 |
97 | | stoweidlem51.4 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑤𝑉 |
98 | 97 | nfel2 2925 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤(𝑊‘𝑖) ∈ 𝑉 |
99 | 96, 98 | nfan 1902 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤(𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉) |
100 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤(𝑊‘𝑖) ⊆ 𝑇 |
101 | 99, 100 | nfim 1899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑤((𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉) → (𝑊‘𝑖) ⊆ 𝑇) |
102 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑊‘𝑖) → (𝑤 ∈ 𝑉 ↔ (𝑊‘𝑖) ∈ 𝑉)) |
103 | 102 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑊‘𝑖) → ((𝜑 ∧ 𝑤 ∈ 𝑉) ↔ (𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉))) |
104 | | sseq1 3946 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑊‘𝑖) → (𝑤 ⊆ 𝑇 ↔ (𝑊‘𝑖) ⊆ 𝑇)) |
105 | 103, 104 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑊‘𝑖) → (((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑤 ⊆ 𝑇) ↔ ((𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉) → (𝑊‘𝑖) ⊆ 𝑇))) |
106 | | stoweidlem51.13 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑤 ⊆ 𝑇) |
107 | 101, 105,
106 | vtoclg1f 3504 |
. . . . . . . . . . 11
⊢ ((𝑊‘𝑖) ∈ 𝑉 → ((𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉) → (𝑊‘𝑖) ⊆ 𝑇)) |
108 | 93, 95, 107 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑊‘𝑖) ⊆ 𝑇) |
109 | 108 | sselda 3921 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → 𝑡 ∈ 𝑇) |
110 | 92, 109 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → ((𝑈‘𝑖)‘𝑡) ∈ ℝ) |
111 | | stoweidlem51.22 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
112 | 111 | rpred 12772 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ ℝ) |
113 | 112 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → 𝐸 ∈ ℝ) |
114 | 10 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → 𝑀 ∈ ℝ) |
115 | 7 | nnne0d 12023 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ≠ 0) |
116 | 115 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → 𝑀 ≠ 0) |
117 | 113, 114,
116 | redivcld 11803 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → (𝐸 / 𝑀) ∈ ℝ) |
118 | | stoweidlem51.17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊‘𝑖)((𝑈‘𝑖)‘𝑡) < (𝐸 / 𝑀)) |
119 | 118 | r19.21bi 3134 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → ((𝑈‘𝑖)‘𝑡) < (𝐸 / 𝑀)) |
120 | | 1red 10976 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℝ) |
121 | | 0lt1 11497 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
122 | 121 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 1) |
123 | 7 | nngt0d 12022 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝑀) |
124 | 111 | rpregt0d 12778 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸)) |
125 | | lediv2 11865 |
. . . . . . . . . . . 12
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1))) |
126 | 120, 122,
10, 123, 124, 125 | syl221anc 1380 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1))) |
127 | 9, 126 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1)) |
128 | 111 | rpcnd 12774 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ ℂ) |
129 | 128 | div1d 11743 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 / 1) = 𝐸) |
130 | 127, 129 | breqtrd 5100 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 / 𝑀) ≤ 𝐸) |
131 | 130 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → (𝐸 / 𝑀) ≤ 𝐸) |
132 | 110, 117,
113, 119, 131 | ltletrd 11135 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → ((𝑈‘𝑖)‘𝑡) < 𝐸) |
133 | 132 | ex 413 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑡 ∈ (𝑊‘𝑖) → ((𝑈‘𝑖)‘𝑡) < 𝐸)) |
134 | 74, 133 | ralrimi 3141 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊‘𝑖)((𝑈‘𝑖)‘𝑡) < 𝐸) |
135 | 67, 14, 1, 4, 5, 68,
69, 7, 70, 13, 71, 72, 134, 19, 16, 17, 111 | stoweidlem48 43589 |
. . . 4
⊢ (𝜑 → ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸) |
136 | | stoweidlem51.18 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈‘𝑖)‘𝑡)) |
137 | | stoweidlem51.23 |
. . . . 5
⊢ (𝜑 → 𝐸 < (1 / 3)) |
138 | 3 | sseli 3917 |
. . . . . 6
⊢ (𝑓 ∈ 𝑌 → 𝑓 ∈ 𝐴) |
139 | 138, 16 | sylan2 593 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) |
140 | | stoweidlem51.16 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝑇) |
141 | 67, 14, 48, 4, 5, 68, 69, 7, 13, 136, 111, 137, 139, 18, 19, 140 | stoweidlem42 43583 |
. . . 4
⊢ (𝜑 → ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡)) |
142 | 66, 135, 141 | 3jca 1127 |
. . 3
⊢ (𝜑 → (∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡))) |
143 | 21, 142 | jca 512 |
. 2
⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡)))) |
144 | | eleq1 2826 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
145 | 56 | nfeq2 2924 |
. . . . . 6
⊢
Ⅎ𝑡 𝑥 = 𝑋 |
146 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥‘𝑡) = (𝑋‘𝑡)) |
147 | 146 | breq2d 5086 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (0 ≤ (𝑥‘𝑡) ↔ 0 ≤ (𝑋‘𝑡))) |
148 | 146 | breq1d 5084 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((𝑥‘𝑡) ≤ 1 ↔ (𝑋‘𝑡) ≤ 1)) |
149 | 147, 148 | anbi12d 631 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ↔ (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
150 | 145, 149 | ralbid 3161 |
. . . . 5
⊢ (𝑥 = 𝑋 → (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
151 | 146 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝑥‘𝑡) < 𝐸 ↔ (𝑋‘𝑡) < 𝐸)) |
152 | 145, 151 | ralbid 3161 |
. . . . 5
⊢ (𝑥 = 𝑋 → (∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ↔ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸)) |
153 | 146 | breq2d 5086 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((1 − 𝐸) < (𝑥‘𝑡) ↔ (1 − 𝐸) < (𝑋‘𝑡))) |
154 | 145, 153 | ralbid 3161 |
. . . . 5
⊢ (𝑥 = 𝑋 → (∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡) ↔ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡))) |
155 | 150, 152,
154 | 3anbi123d 1435 |
. . . 4
⊢ (𝑥 = 𝑋 → ((∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡)))) |
156 | 144, 155 | anbi12d 631 |
. . 3
⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) ↔ (𝑋 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡))))) |
157 | 156 | spcegv 3536 |
. 2
⊢ (𝑋 ∈ 𝐴 → ((𝑋 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡))) → ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))))) |
158 | 21, 143, 157 | sylc 65 |
1
⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡)))) |