Proof of Theorem stoweidlem51
| Step | Hyp | Ref
| Expression |
| 1 | | stoweidlem51.5 |
. . . 4
⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
| 2 | | ssrab2 4080 |
. . . 4
⊢ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} ⊆ 𝐴 |
| 3 | 1, 2 | eqsstri 4030 |
. . 3
⊢ 𝑌 ⊆ 𝐴 |
| 4 | | stoweidlem51.6 |
. . . 4
⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
| 5 | | stoweidlem51.7 |
. . . 4
⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) |
| 6 | | 1zzd 12648 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
| 7 | | stoweidlem51.10 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 8 | 7 | nnzd 12640 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 9 | 7 | nnge1d 12314 |
. . . . 5
⊢ (𝜑 → 1 ≤ 𝑀) |
| 10 | 7 | nnred 12281 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 11 | 10 | leidd 11829 |
. . . . 5
⊢ (𝜑 → 𝑀 ≤ 𝑀) |
| 12 | 6, 8, 8, 9, 11 | elfzd 13555 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (1...𝑀)) |
| 13 | | stoweidlem51.12 |
. . . 4
⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) |
| 14 | | stoweidlem51.2 |
. . . . 5
⊢
Ⅎ𝑡𝜑 |
| 15 | | eqid 2737 |
. . . . 5
⊢ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) |
| 16 | | stoweidlem51.20 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
| 17 | | stoweidlem51.19 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
| 18 | 14, 1, 15, 16, 17 | stoweidlem16 46031 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) |
| 19 | | stoweidlem51.21 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ V) |
| 20 | 4, 5, 12, 13, 18, 19 | fmulcl 45596 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑌) |
| 21 | 3, 20 | sselid 3981 |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 22 | 1 | eleq2i 2833 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑌 ↔ 𝑋 ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)}) |
| 23 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎℎ1 |
| 24 | | nfrab1 3457 |
. . . . . . . . . . . . . 14
⊢
Ⅎℎ{ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
| 25 | 1, 24 | nfcxfr 2903 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ𝑌 |
| 26 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ(𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) |
| 27 | 25, 25, 26 | nfmpo 7515 |
. . . . . . . . . . . 12
⊢
Ⅎℎ(𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
| 28 | 4, 27 | nfcxfr 2903 |
. . . . . . . . . . 11
⊢
Ⅎℎ𝑃 |
| 29 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎℎ𝑈 |
| 30 | 23, 28, 29 | nfseq 14052 |
. . . . . . . . . 10
⊢
Ⅎℎseq1(𝑃, 𝑈) |
| 31 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎℎ𝑀 |
| 32 | 30, 31 | nffv 6916 |
. . . . . . . . 9
⊢
Ⅎℎ(seq1(𝑃, 𝑈)‘𝑀) |
| 33 | 5, 32 | nfcxfr 2903 |
. . . . . . . 8
⊢
Ⅎℎ𝑋 |
| 34 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎℎ𝐴 |
| 35 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎℎ𝑇 |
| 36 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎℎ0 |
| 37 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎℎ
≤ |
| 38 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎℎ𝑡 |
| 39 | 33, 38 | nffv 6916 |
. . . . . . . . . . 11
⊢
Ⅎℎ(𝑋‘𝑡) |
| 40 | 36, 37, 39 | nfbr 5190 |
. . . . . . . . . 10
⊢
Ⅎℎ0 ≤ (𝑋‘𝑡) |
| 41 | 39, 37, 23 | nfbr 5190 |
. . . . . . . . . 10
⊢
Ⅎℎ(𝑋‘𝑡) ≤ 1 |
| 42 | 40, 41 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎℎ(0 ≤
(𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) |
| 43 | 35, 42 | nfralw 3311 |
. . . . . . . 8
⊢
Ⅎℎ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) |
| 44 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡1 |
| 45 | | nfra1 3284 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) |
| 46 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡𝐴 |
| 47 | 45, 46 | nfrabw 3475 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡{ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
| 48 | 1, 47 | nfcxfr 2903 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡𝑌 |
| 49 | | nfmpt1 5250 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) |
| 50 | 48, 48, 49 | nfmpo 7515 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
| 51 | 4, 50 | nfcxfr 2903 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡𝑃 |
| 52 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡𝑈 |
| 53 | 44, 51, 52 | nfseq 14052 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡seq1(𝑃, 𝑈) |
| 54 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡𝑀 |
| 55 | 53, 54 | nffv 6916 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(seq1(𝑃, 𝑈)‘𝑀) |
| 56 | 5, 55 | nfcxfr 2903 |
. . . . . . . . . 10
⊢
Ⅎ𝑡𝑋 |
| 57 | 56 | nfeq2 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑡 ℎ = 𝑋 |
| 58 | | fveq1 6905 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑋 → (ℎ‘𝑡) = (𝑋‘𝑡)) |
| 59 | 58 | breq2d 5155 |
. . . . . . . . . 10
⊢ (ℎ = 𝑋 → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ (𝑋‘𝑡))) |
| 60 | 58 | breq1d 5153 |
. . . . . . . . . 10
⊢ (ℎ = 𝑋 → ((ℎ‘𝑡) ≤ 1 ↔ (𝑋‘𝑡) ≤ 1)) |
| 61 | 59, 60 | anbi12d 632 |
. . . . . . . . 9
⊢ (ℎ = 𝑋 → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
| 62 | 57, 61 | ralbid 3273 |
. . . . . . . 8
⊢ (ℎ = 𝑋 → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
| 63 | 33, 34, 43, 62 | elrabf 3688 |
. . . . . . 7
⊢ (𝑋 ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
| 64 | 22, 63 | bitri 275 |
. . . . . 6
⊢ (𝑋 ∈ 𝑌 ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
| 65 | 20, 64 | sylib 218 |
. . . . 5
⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
| 66 | 65 | simprd 495 |
. . . 4
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1)) |
| 67 | | stoweidlem51.1 |
. . . . 5
⊢
Ⅎ𝑖𝜑 |
| 68 | | stoweidlem51.8 |
. . . . 5
⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
| 69 | | stoweidlem51.9 |
. . . . 5
⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) |
| 70 | | stoweidlem51.11 |
. . . . 5
⊢ (𝜑 → 𝑊:(1...𝑀)⟶𝑉) |
| 71 | | stoweidlem51.14 |
. . . . 5
⊢ (𝜑 → 𝐷 ⊆ ∪ ran
𝑊) |
| 72 | | stoweidlem51.15 |
. . . . 5
⊢ (𝜑 → 𝐷 ⊆ 𝑇) |
| 73 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑡 𝑖 ∈ (1...𝑀) |
| 74 | 14, 73 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑡(𝜑 ∧ 𝑖 ∈ (1...𝑀)) |
| 75 | 13 | ffvelcdmda 7104 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖) ∈ 𝑌) |
| 76 | | fveq1 6905 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑈‘𝑖) → (ℎ‘𝑡) = ((𝑈‘𝑖)‘𝑡)) |
| 77 | 76 | breq2d 5155 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑈‘𝑖) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝑈‘𝑖)‘𝑡))) |
| 78 | 76 | breq1d 5153 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑈‘𝑖) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝑈‘𝑖)‘𝑡) ≤ 1)) |
| 79 | 77, 78 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑈‘𝑖) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1))) |
| 80 | 79 | ralbidv 3178 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑈‘𝑖) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1))) |
| 81 | 80, 1 | elrab2 3695 |
. . . . . . . . . . . . 13
⊢ ((𝑈‘𝑖) ∈ 𝑌 ↔ ((𝑈‘𝑖) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑈‘𝑖)‘𝑡) ∧ ((𝑈‘𝑖)‘𝑡) ≤ 1))) |
| 82 | 81 | simplbi 497 |
. . . . . . . . . . . 12
⊢ ((𝑈‘𝑖) ∈ 𝑌 → (𝑈‘𝑖) ∈ 𝐴) |
| 83 | 75, 82 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖) ∈ 𝐴) |
| 84 | | eleq1 2829 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑈‘𝑖) → (𝑓 ∈ 𝐴 ↔ (𝑈‘𝑖) ∈ 𝐴)) |
| 85 | 84 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑈‘𝑖) → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴))) |
| 86 | | feq1 6716 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑈‘𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘𝑖):𝑇⟶ℝ)) |
| 87 | 85, 86 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑈‘𝑖) → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴) → (𝑈‘𝑖):𝑇⟶ℝ))) |
| 88 | 16 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ 𝐴 → ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ)) |
| 89 | 87, 88 | vtoclga 3577 |
. . . . . . . . . . . 12
⊢ ((𝑈‘𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴) → (𝑈‘𝑖):𝑇⟶ℝ)) |
| 90 | 89 | anabsi7 671 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝐴) → (𝑈‘𝑖):𝑇⟶ℝ) |
| 91 | 83, 90 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖):𝑇⟶ℝ) |
| 92 | 91 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → (𝑈‘𝑖):𝑇⟶ℝ) |
| 93 | 70 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑊‘𝑖) ∈ 𝑉) |
| 94 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝜑) |
| 95 | 94, 93 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉)) |
| 96 | | stoweidlem51.3 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤𝜑 |
| 97 | | stoweidlem51.4 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑤𝑉 |
| 98 | 97 | nfel2 2924 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤(𝑊‘𝑖) ∈ 𝑉 |
| 99 | 96, 98 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤(𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉) |
| 100 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤(𝑊‘𝑖) ⊆ 𝑇 |
| 101 | 99, 100 | nfim 1896 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑤((𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉) → (𝑊‘𝑖) ⊆ 𝑇) |
| 102 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑊‘𝑖) → (𝑤 ∈ 𝑉 ↔ (𝑊‘𝑖) ∈ 𝑉)) |
| 103 | 102 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑊‘𝑖) → ((𝜑 ∧ 𝑤 ∈ 𝑉) ↔ (𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉))) |
| 104 | | sseq1 4009 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑊‘𝑖) → (𝑤 ⊆ 𝑇 ↔ (𝑊‘𝑖) ⊆ 𝑇)) |
| 105 | 103, 104 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑊‘𝑖) → (((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑤 ⊆ 𝑇) ↔ ((𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉) → (𝑊‘𝑖) ⊆ 𝑇))) |
| 106 | | stoweidlem51.13 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑤 ⊆ 𝑇) |
| 107 | 101, 105,
106 | vtoclg1f 3570 |
. . . . . . . . . . 11
⊢ ((𝑊‘𝑖) ∈ 𝑉 → ((𝜑 ∧ (𝑊‘𝑖) ∈ 𝑉) → (𝑊‘𝑖) ⊆ 𝑇)) |
| 108 | 93, 95, 107 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑊‘𝑖) ⊆ 𝑇) |
| 109 | 108 | sselda 3983 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → 𝑡 ∈ 𝑇) |
| 110 | 92, 109 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → ((𝑈‘𝑖)‘𝑡) ∈ ℝ) |
| 111 | | stoweidlem51.22 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 112 | 111 | rpred 13077 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 113 | 112 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → 𝐸 ∈ ℝ) |
| 114 | 10 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → 𝑀 ∈ ℝ) |
| 115 | 7 | nnne0d 12316 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ≠ 0) |
| 116 | 115 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → 𝑀 ≠ 0) |
| 117 | 113, 114,
116 | redivcld 12095 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → (𝐸 / 𝑀) ∈ ℝ) |
| 118 | | stoweidlem51.17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊‘𝑖)((𝑈‘𝑖)‘𝑡) < (𝐸 / 𝑀)) |
| 119 | 118 | r19.21bi 3251 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → ((𝑈‘𝑖)‘𝑡) < (𝐸 / 𝑀)) |
| 120 | | 1red 11262 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℝ) |
| 121 | | 0lt1 11785 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
| 122 | 121 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 1) |
| 123 | 7 | nngt0d 12315 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝑀) |
| 124 | 111 | rpregt0d 13083 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸)) |
| 125 | | lediv2 12158 |
. . . . . . . . . . . 12
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1))) |
| 126 | 120, 122,
10, 123, 124, 125 | syl221anc 1383 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1))) |
| 127 | 9, 126 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1)) |
| 128 | 111 | rpcnd 13079 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 129 | 128 | div1d 12035 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 / 1) = 𝐸) |
| 130 | 127, 129 | breqtrd 5169 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 / 𝑀) ≤ 𝐸) |
| 131 | 130 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → (𝐸 / 𝑀) ≤ 𝐸) |
| 132 | 110, 117,
113, 119, 131 | ltletrd 11421 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊‘𝑖)) → ((𝑈‘𝑖)‘𝑡) < 𝐸) |
| 133 | 132 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑡 ∈ (𝑊‘𝑖) → ((𝑈‘𝑖)‘𝑡) < 𝐸)) |
| 134 | 74, 133 | ralrimi 3257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊‘𝑖)((𝑈‘𝑖)‘𝑡) < 𝐸) |
| 135 | 67, 14, 1, 4, 5, 68,
69, 7, 70, 13, 71, 72, 134, 19, 16, 17, 111 | stoweidlem48 46063 |
. . . 4
⊢ (𝜑 → ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸) |
| 136 | | stoweidlem51.18 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈‘𝑖)‘𝑡)) |
| 137 | | stoweidlem51.23 |
. . . . 5
⊢ (𝜑 → 𝐸 < (1 / 3)) |
| 138 | 3 | sseli 3979 |
. . . . . 6
⊢ (𝑓 ∈ 𝑌 → 𝑓 ∈ 𝐴) |
| 139 | 138, 16 | sylan2 593 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) |
| 140 | | stoweidlem51.16 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝑇) |
| 141 | 67, 14, 48, 4, 5, 68, 69, 7, 13, 136, 111, 137, 139, 18, 19, 140 | stoweidlem42 46057 |
. . . 4
⊢ (𝜑 → ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡)) |
| 142 | 66, 135, 141 | 3jca 1129 |
. . 3
⊢ (𝜑 → (∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡))) |
| 143 | 21, 142 | jca 511 |
. 2
⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡)))) |
| 144 | | eleq1 2829 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
| 145 | 56 | nfeq2 2923 |
. . . . . 6
⊢
Ⅎ𝑡 𝑥 = 𝑋 |
| 146 | | fveq1 6905 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥‘𝑡) = (𝑋‘𝑡)) |
| 147 | 146 | breq2d 5155 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (0 ≤ (𝑥‘𝑡) ↔ 0 ≤ (𝑋‘𝑡))) |
| 148 | 146 | breq1d 5153 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((𝑥‘𝑡) ≤ 1 ↔ (𝑋‘𝑡) ≤ 1)) |
| 149 | 147, 148 | anbi12d 632 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ↔ (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
| 150 | 145, 149 | ralbid 3273 |
. . . . 5
⊢ (𝑥 = 𝑋 → (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1))) |
| 151 | 146 | breq1d 5153 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝑥‘𝑡) < 𝐸 ↔ (𝑋‘𝑡) < 𝐸)) |
| 152 | 145, 151 | ralbid 3273 |
. . . . 5
⊢ (𝑥 = 𝑋 → (∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ↔ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸)) |
| 153 | 146 | breq2d 5155 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((1 − 𝐸) < (𝑥‘𝑡) ↔ (1 − 𝐸) < (𝑋‘𝑡))) |
| 154 | 145, 153 | ralbid 3273 |
. . . . 5
⊢ (𝑥 = 𝑋 → (∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡) ↔ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡))) |
| 155 | 150, 152,
154 | 3anbi123d 1438 |
. . . 4
⊢ (𝑥 = 𝑋 → ((∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡)))) |
| 156 | 144, 155 | anbi12d 632 |
. . 3
⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) ↔ (𝑋 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡))))) |
| 157 | 156 | spcegv 3597 |
. 2
⊢ (𝑋 ∈ 𝐴 → ((𝑋 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑋‘𝑡) ∧ (𝑋‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡))) → ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))))) |
| 158 | 21, 143, 157 | sylc 65 |
1
⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡)))) |