Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem51 Structured version   Visualization version   GIF version

Theorem stoweidlem51 42693
Description: There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem51.1 𝑖𝜑
stoweidlem51.2 𝑡𝜑
stoweidlem51.3 𝑤𝜑
stoweidlem51.4 𝑤𝑉
stoweidlem51.5 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem51.6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem51.7 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem51.8 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem51.9 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem51.10 (𝜑𝑀 ∈ ℕ)
stoweidlem51.11 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem51.12 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem51.13 ((𝜑𝑤𝑉) → 𝑤𝑇)
stoweidlem51.14 (𝜑𝐷 ran 𝑊)
stoweidlem51.15 (𝜑𝐷𝑇)
stoweidlem51.16 (𝜑𝐵𝑇)
stoweidlem51.17 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
stoweidlem51.18 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
stoweidlem51.19 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem51.20 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem51.21 (𝜑𝑇 ∈ V)
stoweidlem51.22 (𝜑𝐸 ∈ ℝ+)
stoweidlem51.23 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem51 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
Distinct variable groups:   𝑓,𝑔,,𝑡,𝐴   𝑓,𝑖,𝑀,,𝑡   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,,𝑡   𝑈,𝑓,𝑔,,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑔,𝑀   𝑤,𝑖,𝑇   𝐵,𝑖   𝐷,𝑖   𝑖,𝐸   𝑈,𝑖   𝑖,𝑊,𝑤   𝑥,𝑡,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝑇   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑡,,𝑖)   𝐴(𝑤,𝑖)   𝐵(𝑤,𝑡,𝑓,𝑔,)   𝐷(𝑤,𝑡,𝑓,𝑔,)   𝑃(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑈(𝑥,𝑤)   𝐸(𝑤,𝑡,𝑓,𝑔,)   𝐹(𝑥,𝑤,𝑡,,𝑖)   𝑀(𝑥,𝑤)   𝑉(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑊(𝑥,𝑡,𝑓,𝑔,)   𝑋(𝑤,𝑡,𝑓,𝑔,,𝑖)   𝑌(𝑥,𝑤,𝑡,,𝑖)   𝑍(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem51
StepHypRef Expression
1 stoweidlem51.5 . . . 4 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
2 ssrab2 4007 . . . 4 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ⊆ 𝐴
31, 2eqsstri 3949 . . 3 𝑌𝐴
4 stoweidlem51.6 . . . 4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
5 stoweidlem51.7 . . . 4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
6 1zzd 12001 . . . . . 6 (𝜑 → 1 ∈ ℤ)
7 stoweidlem51.10 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
87nnzd 12074 . . . . . 6 (𝜑𝑀 ∈ ℤ)
96, 8, 83jca 1125 . . . . 5 (𝜑 → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ))
107nnge1d 11673 . . . . . 6 (𝜑 → 1 ≤ 𝑀)
117nnred 11640 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
1211leidd 11195 . . . . . 6 (𝜑𝑀𝑀)
1310, 12jca 515 . . . . 5 (𝜑 → (1 ≤ 𝑀𝑀𝑀))
14 elfz2 12892 . . . . 5 (𝑀 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (1 ≤ 𝑀𝑀𝑀)))
159, 13, 14sylanbrc 586 . . . 4 (𝜑𝑀 ∈ (1...𝑀))
16 stoweidlem51.12 . . . 4 (𝜑𝑈:(1...𝑀)⟶𝑌)
17 stoweidlem51.2 . . . . 5 𝑡𝜑
18 eqid 2798 . . . . 5 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
19 stoweidlem51.20 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
20 stoweidlem51.19 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2117, 1, 18, 19, 20stoweidlem16 42658 . . . 4 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
22 stoweidlem51.21 . . . 4 (𝜑𝑇 ∈ V)
234, 5, 15, 16, 21, 22fmulcl 42223 . . 3 (𝜑𝑋𝑌)
243, 23sseldi 3913 . 2 (𝜑𝑋𝐴)
251eleq2i 2881 . . . . . . 7 (𝑋𝑌𝑋 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
26 nfcv 2955 . . . . . . . . . . 11 1
27 nfrab1 3337 . . . . . . . . . . . . . 14 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
281, 27nfcxfr 2953 . . . . . . . . . . . . 13 𝑌
29 nfcv 2955 . . . . . . . . . . . . 13 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
3028, 28, 29nfmpo 7215 . . . . . . . . . . . 12 (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
314, 30nfcxfr 2953 . . . . . . . . . . 11 𝑃
32 nfcv 2955 . . . . . . . . . . 11 𝑈
3326, 31, 32nfseq 13374 . . . . . . . . . 10 seq1(𝑃, 𝑈)
34 nfcv 2955 . . . . . . . . . 10 𝑀
3533, 34nffv 6655 . . . . . . . . 9 (seq1(𝑃, 𝑈)‘𝑀)
365, 35nfcxfr 2953 . . . . . . . 8 𝑋
37 nfcv 2955 . . . . . . . 8 𝐴
38 nfcv 2955 . . . . . . . . 9 𝑇
39 nfcv 2955 . . . . . . . . . . 11 0
40 nfcv 2955 . . . . . . . . . . 11
41 nfcv 2955 . . . . . . . . . . . 12 𝑡
4236, 41nffv 6655 . . . . . . . . . . 11 (𝑋𝑡)
4339, 40, 42nfbr 5077 . . . . . . . . . 10 0 ≤ (𝑋𝑡)
4442, 40, 26nfbr 5077 . . . . . . . . . 10 (𝑋𝑡) ≤ 1
4543, 44nfan 1900 . . . . . . . . 9 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)
4638, 45nfralw 3189 . . . . . . . 8 𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)
47 nfcv 2955 . . . . . . . . . . . . 13 𝑡1
48 nfra1 3183 . . . . . . . . . . . . . . . . 17 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
49 nfcv 2955 . . . . . . . . . . . . . . . . 17 𝑡𝐴
5048, 49nfrabw 3338 . . . . . . . . . . . . . . . 16 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
511, 50nfcxfr 2953 . . . . . . . . . . . . . . 15 𝑡𝑌
52 nfmpt1 5128 . . . . . . . . . . . . . . 15 𝑡(𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
5351, 51, 52nfmpo 7215 . . . . . . . . . . . . . 14 𝑡(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
544, 53nfcxfr 2953 . . . . . . . . . . . . 13 𝑡𝑃
55 nfcv 2955 . . . . . . . . . . . . 13 𝑡𝑈
5647, 54, 55nfseq 13374 . . . . . . . . . . . 12 𝑡seq1(𝑃, 𝑈)
57 nfcv 2955 . . . . . . . . . . . 12 𝑡𝑀
5856, 57nffv 6655 . . . . . . . . . . 11 𝑡(seq1(𝑃, 𝑈)‘𝑀)
595, 58nfcxfr 2953 . . . . . . . . . 10 𝑡𝑋
6059nfeq2 2972 . . . . . . . . 9 𝑡 = 𝑋
61 fveq1 6644 . . . . . . . . . . 11 ( = 𝑋 → (𝑡) = (𝑋𝑡))
6261breq2d 5042 . . . . . . . . . 10 ( = 𝑋 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑋𝑡)))
6361breq1d 5040 . . . . . . . . . 10 ( = 𝑋 → ((𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
6462, 63anbi12d 633 . . . . . . . . 9 ( = 𝑋 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6560, 64ralbid 3195 . . . . . . . 8 ( = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6636, 37, 46, 65elrabf 3624 . . . . . . 7 (𝑋 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↔ (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6725, 66bitri 278 . . . . . 6 (𝑋𝑌 ↔ (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6823, 67sylib 221 . . . . 5 (𝜑 → (𝑋𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
6968simprd 499 . . . 4 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
70 stoweidlem51.1 . . . . 5 𝑖𝜑
71 stoweidlem51.8 . . . . 5 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
72 stoweidlem51.9 . . . . 5 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
73 stoweidlem51.11 . . . . 5 (𝜑𝑊:(1...𝑀)⟶𝑉)
74 stoweidlem51.14 . . . . 5 (𝜑𝐷 ran 𝑊)
75 stoweidlem51.15 . . . . 5 (𝜑𝐷𝑇)
76 nfv 1915 . . . . . . 7 𝑡 𝑖 ∈ (1...𝑀)
7717, 76nfan 1900 . . . . . 6 𝑡(𝜑𝑖 ∈ (1...𝑀))
7816ffvelrnda 6828 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
79 fveq1 6644 . . . . . . . . . . . . . . . . 17 ( = (𝑈𝑖) → (𝑡) = ((𝑈𝑖)‘𝑡))
8079breq2d 5042 . . . . . . . . . . . . . . . 16 ( = (𝑈𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝑈𝑖)‘𝑡)))
8179breq1d 5040 . . . . . . . . . . . . . . . 16 ( = (𝑈𝑖) → ((𝑡) ≤ 1 ↔ ((𝑈𝑖)‘𝑡) ≤ 1))
8280, 81anbi12d 633 . . . . . . . . . . . . . . 15 ( = (𝑈𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8382ralbidv 3162 . . . . . . . . . . . . . 14 ( = (𝑈𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8483, 1elrab2 3631 . . . . . . . . . . . . 13 ((𝑈𝑖) ∈ 𝑌 ↔ ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
8584simplbi 501 . . . . . . . . . . . 12 ((𝑈𝑖) ∈ 𝑌 → (𝑈𝑖) ∈ 𝐴)
8678, 85syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝐴)
87 eleq1 2877 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (𝑓𝐴 ↔ (𝑈𝑖) ∈ 𝐴))
8887anbi2d 631 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝐴)))
89 feq1 6468 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
9088, 89imbi12d 348 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)))
9119a1i 11 . . . . . . . . . . . . 13 (𝑓𝐴 → ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ))
9290, 91vtoclga 3522 . . . . . . . . . . . 12 ((𝑈𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ))
9392anabsi7 670 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)
9486, 93syldan 594 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
9594adantr 484 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝑈𝑖):𝑇⟶ℝ)
9673ffvelrnda 6828 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊𝑖) ∈ 𝑉)
97 simpl 486 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
9897, 96jca 515 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑊𝑖) ∈ 𝑉))
99 stoweidlem51.3 . . . . . . . . . . . . . 14 𝑤𝜑
100 stoweidlem51.4 . . . . . . . . . . . . . . 15 𝑤𝑉
101100nfel2 2973 . . . . . . . . . . . . . 14 𝑤(𝑊𝑖) ∈ 𝑉
10299, 101nfan 1900 . . . . . . . . . . . . 13 𝑤(𝜑 ∧ (𝑊𝑖) ∈ 𝑉)
103 nfv 1915 . . . . . . . . . . . . 13 𝑤(𝑊𝑖) ⊆ 𝑇
104102, 103nfim 1897 . . . . . . . . . . . 12 𝑤((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇)
105 eleq1 2877 . . . . . . . . . . . . . 14 (𝑤 = (𝑊𝑖) → (𝑤𝑉 ↔ (𝑊𝑖) ∈ 𝑉))
106105anbi2d 631 . . . . . . . . . . . . 13 (𝑤 = (𝑊𝑖) → ((𝜑𝑤𝑉) ↔ (𝜑 ∧ (𝑊𝑖) ∈ 𝑉)))
107 sseq1 3940 . . . . . . . . . . . . 13 (𝑤 = (𝑊𝑖) → (𝑤𝑇 ↔ (𝑊𝑖) ⊆ 𝑇))
108106, 107imbi12d 348 . . . . . . . . . . . 12 (𝑤 = (𝑊𝑖) → (((𝜑𝑤𝑉) → 𝑤𝑇) ↔ ((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇)))
109 stoweidlem51.13 . . . . . . . . . . . 12 ((𝜑𝑤𝑉) → 𝑤𝑇)
110104, 108, 109vtoclg1f 3514 . . . . . . . . . . 11 ((𝑊𝑖) ∈ 𝑉 → ((𝜑 ∧ (𝑊𝑖) ∈ 𝑉) → (𝑊𝑖) ⊆ 𝑇))
11196, 98, 110sylc 65 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊𝑖) ⊆ 𝑇)
112111sselda 3915 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑡𝑇)
11395, 112ffvelrnd 6829 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
114 stoweidlem51.22 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
115114rpred 12419 . . . . . . . . . 10 (𝜑𝐸 ∈ ℝ)
116115ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝐸 ∈ ℝ)
11711ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑀 ∈ ℝ)
1187nnne0d 11675 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
119118ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → 𝑀 ≠ 0)
120116, 117, 119redivcld 11457 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝐸 / 𝑀) ∈ ℝ)
121 stoweidlem51.17 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
122121r19.21bi 3173 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < (𝐸 / 𝑀))
123 1red 10631 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
124 0lt1 11151 . . . . . . . . . . . . 13 0 < 1
125124a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
1267nngt0d 11674 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑀)
127114rpregt0d 12425 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
128 lediv2 11519 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
129123, 125, 11, 126, 127, 128syl221anc 1378 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
13010, 129mpbid 235 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1))
131114rpcnd 12421 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
132131div1d 11397 . . . . . . . . . 10 (𝜑 → (𝐸 / 1) = 𝐸)
133130, 132breqtrd 5056 . . . . . . . . 9 (𝜑 → (𝐸 / 𝑀) ≤ 𝐸)
134133ad2antrr 725 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → (𝐸 / 𝑀) ≤ 𝐸)
135113, 120, 116, 122, 134ltletrd 10789 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
136135ex 416 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑡 ∈ (𝑊𝑖) → ((𝑈𝑖)‘𝑡) < 𝐸))
13777, 136ralrimi 3180 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
13870, 17, 1, 4, 5, 71, 72, 7, 73, 16, 74, 75, 137, 22, 19, 20, 114stoweidlem48 42690 . . . 4 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
139 stoweidlem51.18 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
140 stoweidlem51.23 . . . . 5 (𝜑𝐸 < (1 / 3))
1413sseli 3911 . . . . . 6 (𝑓𝑌𝑓𝐴)
142141, 19sylan2 595 . . . . 5 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
143 stoweidlem51.16 . . . . 5 (𝜑𝐵𝑇)
14470, 17, 51, 4, 5, 71, 72, 7, 16, 139, 114, 140, 142, 21, 22, 143stoweidlem42 42684 . . . 4 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
14569, 138, 1443jca 1125 . . 3 (𝜑 → (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))
14624, 145jca 515 . 2 (𝜑 → (𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))))
147 eleq1 2877 . . . 4 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
14859nfeq2 2972 . . . . . 6 𝑡 𝑥 = 𝑋
149 fveq1 6644 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥𝑡) = (𝑋𝑡))
150149breq2d 5042 . . . . . . 7 (𝑥 = 𝑋 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝑋𝑡)))
151149breq1d 5040 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
152150, 151anbi12d 633 . . . . . 6 (𝑥 = 𝑋 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
153148, 152ralbid 3195 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
154149breq1d 5040 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑡) < 𝐸 ↔ (𝑋𝑡) < 𝐸))
155148, 154ralbid 3195 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝐷 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝐷 (𝑋𝑡) < 𝐸))
156149breq2d 5042 . . . . . 6 (𝑥 = 𝑋 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝑋𝑡)))
157148, 156ralbid 3195 . . . . 5 (𝑥 = 𝑋 → (∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))
158153, 155, 1573anbi123d 1433 . . . 4 (𝑥 = 𝑋 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))))
159147, 158anbi12d 633 . . 3 (𝑥 = 𝑋 → ((𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))) ↔ (𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡)))))
160159spcegv 3545 . 2 (𝑋𝐴 → ((𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑋𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))) → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))))
16124, 146, 160sylc 65 1 (𝜑 → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wnf 1785  wcel 2111  wnfc 2936  wne 2987  wral 3106  {crab 3110  Vcvv 3441  wss 3881   cuni 4800   class class class wbr 5030  cmpt 5110  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  3c3 11681  cz 11969  +crp 12377  ...cfz 12885  seqcseq 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426
This theorem is referenced by:  stoweidlem54  42696
  Copyright terms: Public domain W3C validator