| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . . 5
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇))) → (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | 
| 2 |  | el2mpocsbcl.o | . . . . . . . . . . . . 13
⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) | 
| 3 |  | nfcv 2904 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑎(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸) | 
| 4 |  | nfcv 2904 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑏(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸) | 
| 5 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 | 
| 6 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 | 
| 7 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 | 
| 8 | 5, 6, 7 | nfmpo 7516 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) | 
| 9 |  | nfcv 2904 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦𝑎 | 
| 10 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦⦋𝑏 / 𝑦⦌𝐶 | 
| 11 | 9, 10 | nfcsbw 3924 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 | 
| 12 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦⦋𝑏 / 𝑦⦌𝐷 | 
| 13 | 9, 12 | nfcsbw 3924 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 | 
| 14 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦⦋𝑏 / 𝑦⦌𝐸 | 
| 15 | 9, 14 | nfcsbw 3924 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 | 
| 16 | 11, 13, 15 | nfmpo 7516 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) | 
| 17 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) | 
| 18 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑏 → 𝐶 = ⦋𝑏 / 𝑦⦌𝐶) | 
| 19 | 18 | csbeq2dv 3905 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶) | 
| 20 | 17, 19 | sylan9eq 2796 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝐶 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶) | 
| 21 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → 𝐷 = ⦋𝑎 / 𝑥⦌𝐷) | 
| 22 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑏 → 𝐷 = ⦋𝑏 / 𝑦⦌𝐷) | 
| 23 | 22 | csbeq2dv 3905 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐷 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷) | 
| 24 | 21, 23 | sylan9eq 2796 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝐷 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷) | 
| 25 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → 𝐸 = ⦋𝑎 / 𝑥⦌𝐸) | 
| 26 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑏 → 𝐸 = ⦋𝑏 / 𝑦⦌𝐸) | 
| 27 | 26 | csbeq2dv 3905 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐸 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) | 
| 28 | 25, 27 | sylan9eq 2796 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝐸 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) | 
| 29 | 20, 24, 28 | mpoeq123dv 7509 | . . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸) = (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸)) | 
| 30 | 3, 4, 8, 16, 29 | cbvmpo 7528 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸)) | 
| 31 | 2, 30 | eqtri 2764 | . . . . . . . . . . . 12
⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸)) | 
| 32 | 31 | a1i 11 | . . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸))) | 
| 33 |  | csbeq1 3901 | . . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑋 → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶) | 
| 34 | 33 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶) | 
| 35 |  | csbeq1 3901 | . . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑌 → ⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑌 / 𝑦⦌𝐶) | 
| 36 | 35 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑌 / 𝑦⦌𝐶) | 
| 37 | 36 | csbeq2dv 3905 | . . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶) | 
| 38 | 34, 37 | eqtrd 2776 | . . . . . . . . . . . . 13
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶) | 
| 39 |  | csbeq1 3901 | . . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑋 → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷) | 
| 40 | 39 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷) | 
| 41 |  | csbeq1 3901 | . . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑌 → ⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑌 / 𝑦⦌𝐷) | 
| 42 | 41 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑌 / 𝑦⦌𝐷) | 
| 43 | 42 | csbeq2dv 3905 | . . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷) | 
| 44 | 40, 43 | eqtrd 2776 | . . . . . . . . . . . . 13
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷) | 
| 45 |  | csbeq1 3901 | . . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑋 → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) | 
| 46 | 45 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) | 
| 47 |  | csbeq1 3901 | . . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑌 → ⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑌 / 𝑦⦌𝐸) | 
| 48 | 47 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑌 / 𝑦⦌𝐸) | 
| 49 | 48 | csbeq2dv 3905 | . . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) | 
| 50 | 46, 49 | eqtrd 2776 | . . . . . . . . . . . . 13
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) | 
| 51 | 38, 44, 50 | mpoeq123dv 7509 | . . . . . . . . . . . 12
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) = (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)) | 
| 52 | 51 | adantl 481 | . . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑎 = 𝑋 ∧ 𝑏 = 𝑌)) → (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) = (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)) | 
| 53 |  | simpl 482 | . . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐴) | 
| 54 | 53 | adantl 481 | . . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐴) | 
| 55 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | 
| 56 | 55 | adantl 481 | . . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | 
| 57 |  | simpl 482 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → 𝐶 ∈ 𝑈) | 
| 58 | 57 | ralimi 3082 | . . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑈) | 
| 59 |  | rspcsbela 4437 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑌 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑈) → ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) | 
| 60 | 55, 58, 59 | syl2an 596 | . . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉)) → ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) | 
| 61 | 60 | ex 412 | . . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈)) | 
| 62 | 61 | ralimdv 3168 | . . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈)) | 
| 63 | 62 | impcom 407 | . . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) | 
| 64 |  | rspcsbela 4437 | . . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) | 
| 65 | 54, 63, 64 | syl2anc 584 | . . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) | 
| 66 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑉) | 
| 67 | 66 | ralimi 3082 | . . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑉) | 
| 68 |  | rspcsbela 4437 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑌 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑉) → ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) | 
| 69 | 55, 67, 68 | syl2an 596 | . . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉)) → ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) | 
| 70 | 69 | ex 412 | . . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉)) | 
| 71 | 70 | ralimdv 3168 | . . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉)) | 
| 72 | 71 | impcom 407 | . . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) | 
| 73 |  | rspcsbela 4437 | . . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) | 
| 74 | 54, 72, 73 | syl2anc 584 | . . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) | 
| 75 |  | mpoexga 8103 | . . . . . . . . . . . 12
⊢
((⦋𝑋 /
𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈 ∧ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) → (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) ∈ V) | 
| 76 | 65, 74, 75 | syl2anc 584 | . . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) ∈ V) | 
| 77 | 32, 52, 54, 56, 76 | ovmpod 7586 | . . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝑂𝑌) = (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)) | 
| 78 | 77 | oveqd 7449 | . . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆(𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)𝑇)) | 
| 79 | 78 | eleq2d 2826 | . . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) ↔ 𝑊 ∈ (𝑆(𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)𝑇))) | 
| 80 |  | eqid 2736 | . . . . . . . . 9
⊢ (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) = (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) | 
| 81 | 80 | elmpocl 7675 | . . . . . . . 8
⊢ (𝑊 ∈ (𝑆(𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)𝑇) → (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)) | 
| 82 | 79, 81 | biimtrdi 253 | . . . . . . 7
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) | 
| 83 | 82 | impancom 451 | . . . . . 6
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇)) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) | 
| 84 | 83 | impcom 407 | . . . . 5
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇))) → (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)) | 
| 85 | 1, 84 | jca 511 | . . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇))) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) | 
| 86 | 85 | ex 412 | . . 3
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇)) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) | 
| 87 | 2 | mpondm0 7674 | . . . . . . 7
⊢ (¬
(𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = ∅) | 
| 88 | 87 | oveqd 7449 | . . . . . 6
⊢ (¬
(𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆∅𝑇)) | 
| 89 | 88 | eleq2d 2826 | . . . . 5
⊢ (¬
(𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) ↔ 𝑊 ∈ (𝑆∅𝑇))) | 
| 90 |  | noel 4337 | . . . . . . 7
⊢  ¬
𝑊 ∈
∅ | 
| 91 | 90 | pm2.21i 119 | . . . . . 6
⊢ (𝑊 ∈ ∅ → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) | 
| 92 |  | 0ov 7469 | . . . . . 6
⊢ (𝑆∅𝑇) = ∅ | 
| 93 | 91, 92 | eleq2s 2858 | . . . . 5
⊢ (𝑊 ∈ (𝑆∅𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) | 
| 94 | 89, 93 | biimtrdi 253 | . . . 4
⊢ (¬
(𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) | 
| 95 | 94 | adantld 490 | . . 3
⊢ (¬
(𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇)) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) | 
| 96 | 86, 95 | pm2.61i 182 | . 2
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇)) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) | 
| 97 | 96 | ex 412 | 1
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) |