Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . 5
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇))) → (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
2 | | el2mpocsbcl.o |
. . . . . . . . . . . . 13
⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) |
3 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸) |
4 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸) |
5 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 |
6 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 |
7 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 |
8 | 5, 6, 7 | nfmpo 7357 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) |
9 | | nfcv 2907 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦𝑎 |
10 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦⦋𝑏 / 𝑦⦌𝐶 |
11 | 9, 10 | nfcsbw 3859 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 |
12 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦⦋𝑏 / 𝑦⦌𝐷 |
13 | 9, 12 | nfcsbw 3859 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 |
14 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦⦋𝑏 / 𝑦⦌𝐸 |
15 | 9, 14 | nfcsbw 3859 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 |
16 | 11, 13, 15 | nfmpo 7357 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) |
17 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) |
18 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑏 → 𝐶 = ⦋𝑏 / 𝑦⦌𝐶) |
19 | 18 | csbeq2dv 3839 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶) |
20 | 17, 19 | sylan9eq 2798 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝐶 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶) |
21 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → 𝐷 = ⦋𝑎 / 𝑥⦌𝐷) |
22 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑏 → 𝐷 = ⦋𝑏 / 𝑦⦌𝐷) |
23 | 22 | csbeq2dv 3839 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐷 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷) |
24 | 21, 23 | sylan9eq 2798 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝐷 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷) |
25 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → 𝐸 = ⦋𝑎 / 𝑥⦌𝐸) |
26 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑏 → 𝐸 = ⦋𝑏 / 𝑦⦌𝐸) |
27 | 26 | csbeq2dv 3839 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐸 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) |
28 | 25, 27 | sylan9eq 2798 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝐸 = ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) |
29 | 20, 24, 28 | mpoeq123dv 7350 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸) = (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸)) |
30 | 3, 4, 8, 16, 29 | cbvmpo 7369 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸)) |
31 | 2, 30 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸)) |
32 | 31 | a1i 11 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸))) |
33 | | csbeq1 3835 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑋 → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶) |
34 | 33 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶) |
35 | | csbeq1 3835 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑌 → ⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑌 / 𝑦⦌𝐶) |
36 | 35 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑌 / 𝑦⦌𝐶) |
37 | 36 | csbeq2dv 3839 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶) |
38 | 34, 37 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶) |
39 | | csbeq1 3835 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑋 → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷) |
40 | 39 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷) |
41 | | csbeq1 3835 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑌 → ⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑌 / 𝑦⦌𝐷) |
42 | 41 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑌 / 𝑦⦌𝐷) |
43 | 42 | csbeq2dv 3839 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷) |
44 | 40, 43 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷) |
45 | | csbeq1 3835 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑋 → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) |
46 | 45 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) |
47 | | csbeq1 3835 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑌 → ⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑌 / 𝑦⦌𝐸) |
48 | 47 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑌 / 𝑦⦌𝐸) |
49 | 48 | csbeq2dv 3839 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑋 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) |
50 | 46, 49 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸 = ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) |
51 | 38, 44, 50 | mpoeq123dv 7350 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) = (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)) |
52 | 51 | adantl 482 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑎 = 𝑋 ∧ 𝑏 = 𝑌)) → (𝑠 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐷 ↦ ⦋𝑎 / 𝑥⦌⦋𝑏 / 𝑦⦌𝐸) = (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)) |
53 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐴) |
54 | 53 | adantl 482 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐴) |
55 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
56 | 55 | adantl 482 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
57 | | simpl 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → 𝐶 ∈ 𝑈) |
58 | 57 | ralimi 3087 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑈) |
59 | | rspcsbela 4369 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑌 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑈) → ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) |
60 | 55, 58, 59 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉)) → ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) |
61 | 60 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈)) |
62 | 61 | ralimdv 3109 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈)) |
63 | 62 | impcom 408 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) |
64 | | rspcsbela 4369 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) |
65 | 54, 63, 64 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈) |
66 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑉) |
67 | 66 | ralimi 3087 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑉) |
68 | | rspcsbela 4369 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑌 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 𝐷 ∈ 𝑉) → ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) |
69 | 55, 67, 68 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉)) → ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) |
70 | 69 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉)) |
71 | 70 | ralimdv 3109 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉)) |
72 | 71 | impcom 408 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) |
73 | | rspcsbela 4369 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) |
74 | 54, 72, 73 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) |
75 | | mpoexga 7918 |
. . . . . . . . . . . 12
⊢
((⦋𝑋 /
𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∈ 𝑈 ∧ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ∈ 𝑉) → (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) ∈ V) |
76 | 65, 74, 75 | syl2anc 584 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) ∈ V) |
77 | 32, 52, 54, 56, 76 | ovmpod 7425 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝑂𝑌) = (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)) |
78 | 77 | oveqd 7292 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆(𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)𝑇)) |
79 | 78 | eleq2d 2824 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) ↔ 𝑊 ∈ (𝑆(𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)𝑇))) |
80 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) = (𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸) |
81 | 80 | elmpocl 7511 |
. . . . . . . 8
⊢ (𝑊 ∈ (𝑆(𝑠 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶, 𝑡 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷 ↦ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐸)𝑇) → (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)) |
82 | 79, 81 | syl6bi 252 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) |
83 | 82 | impancom 452 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇)) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) |
84 | 83 | impcom 408 |
. . . . 5
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇))) → (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)) |
85 | 1, 84 | jca 512 |
. . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇))) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) |
86 | 85 | ex 413 |
. . 3
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇)) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) |
87 | 2 | mpondm0 7510 |
. . . . . . 7
⊢ (¬
(𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = ∅) |
88 | 87 | oveqd 7292 |
. . . . . 6
⊢ (¬
(𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆∅𝑇)) |
89 | 88 | eleq2d 2824 |
. . . . 5
⊢ (¬
(𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) ↔ 𝑊 ∈ (𝑆∅𝑇))) |
90 | | noel 4264 |
. . . . . . 7
⊢ ¬
𝑊 ∈
∅ |
91 | 90 | pm2.21i 119 |
. . . . . 6
⊢ (𝑊 ∈ ∅ → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) |
92 | | 0ov 7312 |
. . . . . 6
⊢ (𝑆∅𝑇) = ∅ |
93 | 91, 92 | eleq2s 2857 |
. . . . 5
⊢ (𝑊 ∈ (𝑆∅𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) |
94 | 89, 93 | syl6bi 252 |
. . . 4
⊢ (¬
(𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) |
95 | 94 | adantld 491 |
. . 3
⊢ (¬
(𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇)) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) |
96 | 86, 95 | pm2.61i 182 |
. 2
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) ∧ 𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇)) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷))) |
97 | 96 | ex 413 |
1
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) |