MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpowndlem4 Structured version   Visualization version   GIF version

Theorem axpowndlem4 10011
Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2379. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
axpowndlem4 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))

Proof of Theorem axpowndlem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 axpowndlem3 10010 . . . . 5 𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥))
21ax-gen 1797 . . . 4 𝑤𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥))
3 nfnae 2445 . . . . . 6 𝑦 ¬ ∀𝑦 𝑦 = 𝑥
4 nfnae 2445 . . . . . 6 𝑦 ¬ ∀𝑦 𝑦 = 𝑧
53, 4nfan 1900 . . . . 5 𝑦(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
6 nfcvf 2981 . . . . . . . . 9 (¬ ∀𝑦 𝑦 = 𝑥𝑦𝑥)
76adantr 484 . . . . . . . 8 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑦𝑥)
8 nfcvd 2956 . . . . . . . 8 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑦𝑤)
97, 8nfeqd 2965 . . . . . . 7 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑥 = 𝑤)
109nfnd 1859 . . . . . 6 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 ¬ 𝑥 = 𝑤)
11 nfnae 2445 . . . . . . . 8 𝑥 ¬ ∀𝑦 𝑦 = 𝑥
12 nfnae 2445 . . . . . . . 8 𝑥 ¬ ∀𝑦 𝑦 = 𝑧
1311, 12nfan 1900 . . . . . . 7 𝑥(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
14 nfv 1915 . . . . . . . 8 𝑤(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
15 nfnae 2445 . . . . . . . . . . . . 13 𝑧 ¬ ∀𝑦 𝑦 = 𝑥
16 nfnae 2445 . . . . . . . . . . . . 13 𝑧 ¬ ∀𝑦 𝑦 = 𝑧
1715, 16nfan 1900 . . . . . . . . . . . 12 𝑧(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
187, 8nfeld 2966 . . . . . . . . . . . 12 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑥𝑤)
1917, 18nfexd 2337 . . . . . . . . . . 11 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑧 𝑥𝑤)
20 nfcvf 2981 . . . . . . . . . . . . . 14 (¬ ∀𝑦 𝑦 = 𝑧𝑦𝑧)
2120adantl 485 . . . . . . . . . . . . 13 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑦𝑧)
227, 21nfeld 2966 . . . . . . . . . . . 12 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑥𝑧)
2314, 22nfald 2336 . . . . . . . . . . 11 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑤 𝑥𝑧)
2419, 23nfimd 1895 . . . . . . . . . 10 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧))
2513, 24nfald 2336 . . . . . . . . 9 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧))
268, 7nfeld 2966 . . . . . . . . 9 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑤𝑥)
2725, 26nfimd 1895 . . . . . . . 8 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥))
2814, 27nfald 2336 . . . . . . 7 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥))
2913, 28nfexd 2337 . . . . . 6 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥))
3010, 29nfimd 1895 . . . . 5 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥)))
31 equequ2 2033 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥 = 𝑤𝑥 = 𝑦))
3231notbid 321 . . . . . . . 8 (𝑤 = 𝑦 → (¬ 𝑥 = 𝑤 ↔ ¬ 𝑥 = 𝑦))
3332adantl 485 . . . . . . 7 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (¬ 𝑥 = 𝑤 ↔ ¬ 𝑥 = 𝑦))
34 nfcvd 2956 . . . . . . . . . . . . . . 15 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑥𝑤)
35 nfcvf2 2982 . . . . . . . . . . . . . . . 16 (¬ ∀𝑦 𝑦 = 𝑥𝑥𝑦)
3635adantr 484 . . . . . . . . . . . . . . 15 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑥𝑦)
3734, 36nfeqd 2965 . . . . . . . . . . . . . 14 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑥 𝑤 = 𝑦)
3813, 37nfan1 2198 . . . . . . . . . . . . 13 𝑥((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦)
39 nfcvd 2956 . . . . . . . . . . . . . . . . 17 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑧𝑤)
40 nfcvf2 2982 . . . . . . . . . . . . . . . . . 18 (¬ ∀𝑦 𝑦 = 𝑧𝑧𝑦)
4140adantl 485 . . . . . . . . . . . . . . . . 17 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑧𝑦)
4239, 41nfeqd 2965 . . . . . . . . . . . . . . . 16 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑧 𝑤 = 𝑦)
4317, 42nfan1 2198 . . . . . . . . . . . . . . 15 𝑧((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦)
44 elequ2 2126 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
4544adantl 485 . . . . . . . . . . . . . . 15 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (𝑥𝑤𝑥𝑦))
4643, 45exbid 2223 . . . . . . . . . . . . . 14 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∃𝑧 𝑥𝑤 ↔ ∃𝑧 𝑥𝑦))
47 biidd 265 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (𝑥𝑧𝑥𝑧))
4847a1i 11 . . . . . . . . . . . . . . . 16 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑤 = 𝑦 → (𝑥𝑧𝑥𝑧)))
495, 22, 48cbvald 2417 . . . . . . . . . . . . . . 15 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑤 𝑥𝑧 ↔ ∀𝑦 𝑥𝑧))
5049adantr 484 . . . . . . . . . . . . . 14 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∀𝑤 𝑥𝑧 ↔ ∀𝑦 𝑥𝑧))
5146, 50imbi12d 348 . . . . . . . . . . . . 13 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → ((∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) ↔ (∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧)))
5238, 51albid 2222 . . . . . . . . . . . 12 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) ↔ ∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧)))
53 elequ1 2118 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
5453adantl 485 . . . . . . . . . . . 12 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (𝑤𝑥𝑦𝑥))
5552, 54imbi12d 348 . . . . . . . . . . 11 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → ((∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥) ↔ (∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5655ex 416 . . . . . . . . . 10 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑤 = 𝑦 → ((∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥) ↔ (∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))
575, 27, 56cbvald 2417 . . . . . . . . 9 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥) ↔ ∀𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5813, 57exbid 2223 . . . . . . . 8 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥) ↔ ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5958adantr 484 . . . . . . 7 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥) ↔ ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
6033, 59imbi12d 348 . . . . . 6 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → ((¬ 𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥)) ↔ (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))
6160ex 416 . . . . 5 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑤 = 𝑦 → ((¬ 𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥)) ↔ (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))))
625, 30, 61cbvald 2417 . . . 4 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑤𝑥 = 𝑤 → ∃𝑥𝑤(∀𝑥(∃𝑧 𝑥𝑤 → ∀𝑤 𝑥𝑧) → 𝑤𝑥)) ↔ ∀𝑦𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))
632, 62mpbii 236 . . 3 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∀𝑦𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
646319.21bi 2186 . 2 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
6564ex 416 1 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536  wex 1781  wnfc 2936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-13 2379  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-reg 9040
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-pw 4499  df-sn 4526  df-pr 4528
This theorem is referenced by:  axpownd  10012
  Copyright terms: Public domain W3C validator