MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex3rd Structured version   Visualization version   GIF version

Theorem opabex3rd 7667
Description: Existence of an ordered pair abstraction if the second components are elements of a set. (Contributed by AV, 17-Sep-2023.)
Hypotheses
Ref Expression
opabex3rd.1 (𝜑𝐴 ∈ V)
opabex3rd.2 ((𝜑𝑦𝐴) → {𝑥𝜓} ∈ V)
Assertion
Ref Expression
opabex3rd (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜓)} ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem opabex3rd
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1954 . . . . . . 7 (∃𝑥(𝑦𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (𝑦𝐴 ∧ ∃𝑥(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
2 an12 643 . . . . . . . 8 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑦𝐴𝜓)) ↔ (𝑦𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
32exbii 1848 . . . . . . 7 (∃𝑥(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑦𝐴𝜓)) ↔ ∃𝑥(𝑦𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
4 elxp 5578 . . . . . . . . . 10 (𝑧 ∈ ({𝑥𝜓} × {𝑦}) ↔ ∃𝑤𝑣(𝑧 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ {𝑥𝜓} ∧ 𝑣 ∈ {𝑦})))
5 ancom 463 . . . . . . . . . . . 12 ((𝑤 ∈ {𝑥𝜓} ∧ 𝑣 ∈ {𝑦}) ↔ (𝑣 ∈ {𝑦} ∧ 𝑤 ∈ {𝑥𝜓}))
65anbi2i 624 . . . . . . . . . . 11 ((𝑧 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ {𝑥𝜓} ∧ 𝑣 ∈ {𝑦})) ↔ (𝑧 = ⟨𝑤, 𝑣⟩ ∧ (𝑣 ∈ {𝑦} ∧ 𝑤 ∈ {𝑥𝜓})))
762exbii 1849 . . . . . . . . . 10 (∃𝑤𝑣(𝑧 = ⟨𝑤, 𝑣⟩ ∧ (𝑤 ∈ {𝑥𝜓} ∧ 𝑣 ∈ {𝑦})) ↔ ∃𝑤𝑣(𝑧 = ⟨𝑤, 𝑣⟩ ∧ (𝑣 ∈ {𝑦} ∧ 𝑤 ∈ {𝑥𝜓})))
84, 7bitri 277 . . . . . . . . 9 (𝑧 ∈ ({𝑥𝜓} × {𝑦}) ↔ ∃𝑤𝑣(𝑧 = ⟨𝑤, 𝑣⟩ ∧ (𝑣 ∈ {𝑦} ∧ 𝑤 ∈ {𝑥𝜓})))
9 an12 643 . . . . . . . . . . . . 13 ((𝑧 = ⟨𝑤, 𝑣⟩ ∧ (𝑣 ∈ {𝑦} ∧ 𝑤 ∈ {𝑥𝜓})) ↔ (𝑣 ∈ {𝑦} ∧ (𝑧 = ⟨𝑤, 𝑣⟩ ∧ 𝑤 ∈ {𝑥𝜓})))
10 velsn 4583 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑦} ↔ 𝑣 = 𝑦)
1110anbi1i 625 . . . . . . . . . . . . 13 ((𝑣 ∈ {𝑦} ∧ (𝑧 = ⟨𝑤, 𝑣⟩ ∧ 𝑤 ∈ {𝑥𝜓})) ↔ (𝑣 = 𝑦 ∧ (𝑧 = ⟨𝑤, 𝑣⟩ ∧ 𝑤 ∈ {𝑥𝜓})))
129, 11bitri 277 . . . . . . . . . . . 12 ((𝑧 = ⟨𝑤, 𝑣⟩ ∧ (𝑣 ∈ {𝑦} ∧ 𝑤 ∈ {𝑥𝜓})) ↔ (𝑣 = 𝑦 ∧ (𝑧 = ⟨𝑤, 𝑣⟩ ∧ 𝑤 ∈ {𝑥𝜓})))
1312exbii 1848 . . . . . . . . . . 11 (∃𝑣(𝑧 = ⟨𝑤, 𝑣⟩ ∧ (𝑣 ∈ {𝑦} ∧ 𝑤 ∈ {𝑥𝜓})) ↔ ∃𝑣(𝑣 = 𝑦 ∧ (𝑧 = ⟨𝑤, 𝑣⟩ ∧ 𝑤 ∈ {𝑥𝜓})))
14 opeq2 4804 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → ⟨𝑤, 𝑣⟩ = ⟨𝑤, 𝑦⟩)
1514eqeq2d 2832 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (𝑧 = ⟨𝑤, 𝑣⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩))
1615anbi1d 631 . . . . . . . . . . . 12 (𝑣 = 𝑦 → ((𝑧 = ⟨𝑤, 𝑣⟩ ∧ 𝑤 ∈ {𝑥𝜓}) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ 𝑤 ∈ {𝑥𝜓})))
1716equsexvw 2011 . . . . . . . . . . 11 (∃𝑣(𝑣 = 𝑦 ∧ (𝑧 = ⟨𝑤, 𝑣⟩ ∧ 𝑤 ∈ {𝑥𝜓})) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ 𝑤 ∈ {𝑥𝜓}))
1813, 17bitri 277 . . . . . . . . . 10 (∃𝑣(𝑧 = ⟨𝑤, 𝑣⟩ ∧ (𝑣 ∈ {𝑦} ∧ 𝑤 ∈ {𝑥𝜓})) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ 𝑤 ∈ {𝑥𝜓}))
1918exbii 1848 . . . . . . . . 9 (∃𝑤𝑣(𝑧 = ⟨𝑤, 𝑣⟩ ∧ (𝑣 ∈ {𝑦} ∧ 𝑤 ∈ {𝑥𝜓})) ↔ ∃𝑤(𝑧 = ⟨𝑤, 𝑦⟩ ∧ 𝑤 ∈ {𝑥𝜓}))
20 nfv 1915 . . . . . . . . . . 11 𝑥 𝑧 = ⟨𝑤, 𝑦
21 nfsab1 2808 . . . . . . . . . . 11 𝑥 𝑤 ∈ {𝑥𝜓}
2220, 21nfan 1900 . . . . . . . . . 10 𝑥(𝑧 = ⟨𝑤, 𝑦⟩ ∧ 𝑤 ∈ {𝑥𝜓})
23 nfv 1915 . . . . . . . . . 10 𝑤(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
24 opeq1 4803 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ⟨𝑤, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
2524eqeq2d 2832 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑧 = ⟨𝑤, 𝑦⟩ ↔ 𝑧 = ⟨𝑥, 𝑦⟩))
26 sbequ12 2253 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝜓 ↔ [𝑤 / 𝑥]𝜓))
2726equcoms 2027 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝜓 ↔ [𝑤 / 𝑥]𝜓))
28 df-clab 2800 . . . . . . . . . . . 12 (𝑤 ∈ {𝑥𝜓} ↔ [𝑤 / 𝑥]𝜓)
2927, 28syl6rbbr 292 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑤 ∈ {𝑥𝜓} ↔ 𝜓))
3025, 29anbi12d 632 . . . . . . . . . 10 (𝑤 = 𝑥 → ((𝑧 = ⟨𝑤, 𝑦⟩ ∧ 𝑤 ∈ {𝑥𝜓}) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
3122, 23, 30cbvexv1 2362 . . . . . . . . 9 (∃𝑤(𝑧 = ⟨𝑤, 𝑦⟩ ∧ 𝑤 ∈ {𝑥𝜓}) ↔ ∃𝑥(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
328, 19, 313bitri 299 . . . . . . . 8 (𝑧 ∈ ({𝑥𝜓} × {𝑦}) ↔ ∃𝑥(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
3332anbi2i 624 . . . . . . 7 ((𝑦𝐴𝑧 ∈ ({𝑥𝜓} × {𝑦})) ↔ (𝑦𝐴 ∧ ∃𝑥(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
341, 3, 333bitr4ri 306 . . . . . 6 ((𝑦𝐴𝑧 ∈ ({𝑥𝜓} × {𝑦})) ↔ ∃𝑥(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑦𝐴𝜓)))
3534exbii 1848 . . . . 5 (∃𝑦(𝑦𝐴𝑧 ∈ ({𝑥𝜓} × {𝑦})) ↔ ∃𝑦𝑥(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑦𝐴𝜓)))
36 excom 2169 . . . . 5 (∃𝑦𝑥(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑦𝐴𝜓)) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑦𝐴𝜓)))
3735, 36bitri 277 . . . 4 (∃𝑦(𝑦𝐴𝑧 ∈ ({𝑥𝜓} × {𝑦})) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑦𝐴𝜓)))
38 eliun 4923 . . . . 5 (𝑧 𝑦𝐴 ({𝑥𝜓} × {𝑦}) ↔ ∃𝑦𝐴 𝑧 ∈ ({𝑥𝜓} × {𝑦}))
39 df-rex 3144 . . . . 5 (∃𝑦𝐴 𝑧 ∈ ({𝑥𝜓} × {𝑦}) ↔ ∃𝑦(𝑦𝐴𝑧 ∈ ({𝑥𝜓} × {𝑦})))
4038, 39bitri 277 . . . 4 (𝑧 𝑦𝐴 ({𝑥𝜓} × {𝑦}) ↔ ∃𝑦(𝑦𝐴𝑧 ∈ ({𝑥𝜓} × {𝑦})))
41 elopab 5414 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜓)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑦𝐴𝜓)))
4237, 40, 413bitr4i 305 . . 3 (𝑧 𝑦𝐴 ({𝑥𝜓} × {𝑦}) ↔ 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜓)})
4342eqriv 2818 . 2 𝑦𝐴 ({𝑥𝜓} × {𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜓)}
44 opabex3rd.1 . . 3 (𝜑𝐴 ∈ V)
45 opabex3rd.2 . . . . 5 ((𝜑𝑦𝐴) → {𝑥𝜓} ∈ V)
46 snex 5332 . . . . 5 {𝑦} ∈ V
47 xpexg 7473 . . . . 5 (({𝑥𝜓} ∈ V ∧ {𝑦} ∈ V) → ({𝑥𝜓} × {𝑦}) ∈ V)
4845, 46, 47sylancl 588 . . . 4 ((𝜑𝑦𝐴) → ({𝑥𝜓} × {𝑦}) ∈ V)
4948ralrimiva 3182 . . 3 (𝜑 → ∀𝑦𝐴 ({𝑥𝜓} × {𝑦}) ∈ V)
50 iunexg 7664 . . 3 ((𝐴 ∈ V ∧ ∀𝑦𝐴 ({𝑥𝜓} × {𝑦}) ∈ V) → 𝑦𝐴 ({𝑥𝜓} × {𝑦}) ∈ V)
5144, 49, 50syl2anc 586 . 2 (𝜑 𝑦𝐴 ({𝑥𝜓} × {𝑦}) ∈ V)
5243, 51eqeltrrid 2918 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜓)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  [wsb 2069  wcel 2114  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  {csn 4567  cop 4573   ciun 4919  {copab 5128   × cxp 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363
This theorem is referenced by:  satfvsuclem1  32606  satf0suclem  32622  fmlasuc0  32631
  Copyright terms: Public domain W3C validator