Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex3d Structured version   Visualization version   GIF version

Theorem opabex3d 7644
 Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.)
Hypotheses
Ref Expression
opabex3d.1 (𝜑𝐴 ∈ V)
opabex3d.2 ((𝜑𝑥𝐴) → {𝑦𝜓} ∈ V)
Assertion
Ref Expression
opabex3d (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)} ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem opabex3d
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1954 . . . . . 6 (∃𝑦(𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
2 an12 643 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)) ↔ (𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
32exbii 1848 . . . . . 6 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
4 elxp 5554 . . . . . . . 8 (𝑧 ∈ ({𝑥} × {𝑦𝜓}) ↔ ∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})))
5 excom 2169 . . . . . . . . 9 (∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑤𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})))
6 an12 643 . . . . . . . . . . . . 13 ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑣 ∈ {𝑥} ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
7 velsn 4559 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑥} ↔ 𝑣 = 𝑥)
87anbi1i 625 . . . . . . . . . . . . 13 ((𝑣 ∈ {𝑥} ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
96, 8bitri 277 . . . . . . . . . . . 12 ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
109exbii 1848 . . . . . . . . . . 11 (∃𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑣(𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
11 opeq1 4779 . . . . . . . . . . . . . 14 (𝑣 = 𝑥 → ⟨𝑣, 𝑤⟩ = ⟨𝑥, 𝑤⟩)
1211eqeq2d 2831 . . . . . . . . . . . . 13 (𝑣 = 𝑥 → (𝑧 = ⟨𝑣, 𝑤⟩ ↔ 𝑧 = ⟨𝑥, 𝑤⟩))
1312anbi1d 631 . . . . . . . . . . . 12 (𝑣 = 𝑥 → ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
1413equsexvw 2011 . . . . . . . . . . 11 (∃𝑣(𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
1510, 14bitri 277 . . . . . . . . . 10 (∃𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
1615exbii 1848 . . . . . . . . 9 (∃𝑤𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
175, 16bitri 277 . . . . . . . 8 (∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
18 nfv 1915 . . . . . . . . . 10 𝑦 𝑧 = ⟨𝑥, 𝑤
19 nfsab1 2807 . . . . . . . . . 10 𝑦 𝑤 ∈ {𝑦𝜓}
2018, 19nfan 1900 . . . . . . . . 9 𝑦(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})
21 nfv 1915 . . . . . . . . 9 𝑤(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
22 opeq2 4780 . . . . . . . . . . 11 (𝑤 = 𝑦 → ⟨𝑥, 𝑤⟩ = ⟨𝑥, 𝑦⟩)
2322eqeq2d 2831 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑧 = ⟨𝑥, 𝑤⟩ ↔ 𝑧 = ⟨𝑥, 𝑦⟩))
24 sbequ12 2253 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝜓 ↔ [𝑤 / 𝑦]𝜓))
2524equcoms 2027 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝜓 ↔ [𝑤 / 𝑦]𝜓))
26 df-clab 2799 . . . . . . . . . . 11 (𝑤 ∈ {𝑦𝜓} ↔ [𝑤 / 𝑦]𝜓)
2725, 26syl6rbbr 292 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤 ∈ {𝑦𝜓} ↔ 𝜓))
2823, 27anbi12d 632 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
2920, 21, 28cbvexv1 2362 . . . . . . . 8 (∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
304, 17, 293bitri 299 . . . . . . 7 (𝑧 ∈ ({𝑥} × {𝑦𝜓}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
3130anbi2i 624 . . . . . 6 ((𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
321, 3, 313bitr4ri 306 . . . . 5 ((𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)))
3332exbii 1848 . . . 4 (∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)))
34 eliun 4899 . . . . 5 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × {𝑦𝜓}))
35 df-rex 3131 . . . . 5 (∃𝑥𝐴 𝑧 ∈ ({𝑥} × {𝑦𝜓}) ↔ ∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})))
3634, 35bitri 277 . . . 4 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ↔ ∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})))
37 elopab 5390 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)))
3833, 36, 373bitr4i 305 . . 3 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ↔ 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)})
3938eqriv 2817 . 2 𝑥𝐴 ({𝑥} × {𝑦𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)}
40 opabex3d.1 . . 3 (𝜑𝐴 ∈ V)
41 snex 5308 . . . . 5 {𝑥} ∈ V
42 opabex3d.2 . . . . 5 ((𝜑𝑥𝐴) → {𝑦𝜓} ∈ V)
43 xpexg 7451 . . . . 5 (({𝑥} ∈ V ∧ {𝑦𝜓} ∈ V) → ({𝑥} × {𝑦𝜓}) ∈ V)
4441, 42, 43sylancr 589 . . . 4 ((𝜑𝑥𝐴) → ({𝑥} × {𝑦𝜓}) ∈ V)
4544ralrimiva 3169 . . 3 (𝜑 → ∀𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V)
46 iunexg 7642 . . 3 ((𝐴 ∈ V ∧ ∀𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V) → 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V)
4740, 45, 46syl2anc 586 . 2 (𝜑 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V)
4839, 47eqeltrrid 2916 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)} ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1537  ∃wex 1780  [wsb 2069   ∈ wcel 2114  {cab 2798  ∀wral 3125  ∃wrex 3126  Vcvv 3473  {csn 4543  ⟨cop 4549  ∪ ciun 4895  {copab 5104   × cxp 5529 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339 This theorem is referenced by:  wksfval  27378  fpwrelmap  30456  satfv0  32613  cnvepresex  35627  opabresex0d  43632  upwlksfval  44155
 Copyright terms: Public domain W3C validator