MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex3d Structured version   Visualization version   GIF version

Theorem opabex3d 7655
Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.)
Hypotheses
Ref Expression
opabex3d.1 (𝜑𝐴 ∈ V)
opabex3d.2 ((𝜑𝑥𝐴) → {𝑦𝜓} ∈ V)
Assertion
Ref Expression
opabex3d (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)} ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem opabex3d
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1945 . . . . . 6 (∃𝑦(𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
2 an12 641 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)) ↔ (𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
32exbii 1839 . . . . . 6 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
4 elxp 5571 . . . . . . . 8 (𝑧 ∈ ({𝑥} × {𝑦𝜓}) ↔ ∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})))
5 excom 2159 . . . . . . . . 9 (∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑤𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})))
6 an12 641 . . . . . . . . . . . . 13 ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑣 ∈ {𝑥} ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
7 velsn 4573 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑥} ↔ 𝑣 = 𝑥)
87anbi1i 623 . . . . . . . . . . . . 13 ((𝑣 ∈ {𝑥} ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
96, 8bitri 276 . . . . . . . . . . . 12 ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
109exbii 1839 . . . . . . . . . . 11 (∃𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑣(𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
11 opeq1 4795 . . . . . . . . . . . . . 14 (𝑣 = 𝑥 → ⟨𝑣, 𝑤⟩ = ⟨𝑥, 𝑤⟩)
1211eqeq2d 2829 . . . . . . . . . . . . 13 (𝑣 = 𝑥 → (𝑧 = ⟨𝑣, 𝑤⟩ ↔ 𝑧 = ⟨𝑥, 𝑤⟩))
1312anbi1d 629 . . . . . . . . . . . 12 (𝑣 = 𝑥 → ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
1413equsexvw 2002 . . . . . . . . . . 11 (∃𝑣(𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
1510, 14bitri 276 . . . . . . . . . 10 (∃𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
1615exbii 1839 . . . . . . . . 9 (∃𝑤𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
175, 16bitri 276 . . . . . . . 8 (∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
18 nfv 1906 . . . . . . . . . 10 𝑦 𝑧 = ⟨𝑥, 𝑤
19 nfsab1 2805 . . . . . . . . . 10 𝑦 𝑤 ∈ {𝑦𝜓}
2018, 19nfan 1891 . . . . . . . . 9 𝑦(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})
21 nfv 1906 . . . . . . . . 9 𝑤(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
22 opeq2 4796 . . . . . . . . . . 11 (𝑤 = 𝑦 → ⟨𝑥, 𝑤⟩ = ⟨𝑥, 𝑦⟩)
2322eqeq2d 2829 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑧 = ⟨𝑥, 𝑤⟩ ↔ 𝑧 = ⟨𝑥, 𝑦⟩))
24 sbequ12 2243 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝜓 ↔ [𝑤 / 𝑦]𝜓))
2524equcoms 2018 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝜓 ↔ [𝑤 / 𝑦]𝜓))
26 df-clab 2797 . . . . . . . . . . 11 (𝑤 ∈ {𝑦𝜓} ↔ [𝑤 / 𝑦]𝜓)
2725, 26syl6rbbr 291 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤 ∈ {𝑦𝜓} ↔ 𝜓))
2823, 27anbi12d 630 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
2920, 21, 28cbvexv1 2353 . . . . . . . 8 (∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
304, 17, 293bitri 298 . . . . . . 7 (𝑧 ∈ ({𝑥} × {𝑦𝜓}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
3130anbi2i 622 . . . . . 6 ((𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
321, 3, 313bitr4ri 305 . . . . 5 ((𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)))
3332exbii 1839 . . . 4 (∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)))
34 eliun 4914 . . . . 5 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × {𝑦𝜓}))
35 df-rex 3141 . . . . 5 (∃𝑥𝐴 𝑧 ∈ ({𝑥} × {𝑦𝜓}) ↔ ∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})))
3634, 35bitri 276 . . . 4 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ↔ ∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})))
37 elopab 5405 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)))
3833, 36, 373bitr4i 304 . . 3 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ↔ 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)})
3938eqriv 2815 . 2 𝑥𝐴 ({𝑥} × {𝑦𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)}
40 opabex3d.1 . . 3 (𝜑𝐴 ∈ V)
41 snex 5322 . . . . 5 {𝑥} ∈ V
42 opabex3d.2 . . . . 5 ((𝜑𝑥𝐴) → {𝑦𝜓} ∈ V)
43 xpexg 7462 . . . . 5 (({𝑥} ∈ V ∧ {𝑦𝜓} ∈ V) → ({𝑥} × {𝑦𝜓}) ∈ V)
4441, 42, 43sylancr 587 . . . 4 ((𝜑𝑥𝐴) → ({𝑥} × {𝑦𝜓}) ∈ V)
4544ralrimiva 3179 . . 3 (𝜑 → ∀𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V)
46 iunexg 7653 . . 3 ((𝐴 ∈ V ∧ ∀𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V) → 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V)
4740, 45, 46syl2anc 584 . 2 (𝜑 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V)
4839, 47eqeltrrid 2915 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wex 1771  [wsb 2060  wcel 2105  {cab 2796  wral 3135  wrex 3136  Vcvv 3492  {csn 4557  cop 4563   ciun 4910  {copab 5119   × cxp 5546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356
This theorem is referenced by:  wksfval  27318  fpwrelmap  30395  satfv0  32502  cnvepresex  35472  opabresex0d  43361  upwlksfval  43887
  Copyright terms: Public domain W3C validator