Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfse | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | ⊢ Ⅎ𝑥𝑅 |
nffr.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfse | ⊢ Ⅎ𝑥 𝑅 Se 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-se 5545 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑏 ∈ 𝐴 {𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V) | |
2 | nffr.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥𝑎 | |
4 | nffr.r | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
5 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥𝑏 | |
6 | 3, 4, 5 | nfbr 5121 | . . . . 5 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
7 | 6, 2 | nfrabw 3318 | . . . 4 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} |
8 | 7 | nfel1 2923 | . . 3 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V |
9 | 2, 8 | nfralw 3151 | . 2 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 {𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V |
10 | 1, 9 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥 𝑅 Se 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ∀wral 3064 {crab 3068 Vcvv 3432 class class class wbr 5074 Se wse 5542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-se 5545 |
This theorem is referenced by: nfoi 9273 |
Copyright terms: Public domain | W3C validator |