MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfse Structured version   Visualization version   GIF version

Theorem nfse 5555
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nfse 𝑥 𝑅 Se 𝐴

Proof of Theorem nfse
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 5536 . 2 (𝑅 Se 𝐴 ↔ ∀𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V)
2 nffr.a . . 3 𝑥𝐴
3 nfcv 2906 . . . . . 6 𝑥𝑎
4 nffr.r . . . . . 6 𝑥𝑅
5 nfcv 2906 . . . . . 6 𝑥𝑏
63, 4, 5nfbr 5117 . . . . 5 𝑥 𝑎𝑅𝑏
76, 2nfrabw 3311 . . . 4 𝑥{𝑎𝐴𝑎𝑅𝑏}
87nfel1 2922 . . 3 𝑥{𝑎𝐴𝑎𝑅𝑏} ∈ V
92, 8nfralw 3149 . 2 𝑥𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V
101, 9nfxfr 1856 1 𝑥 𝑅 Se 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1787  wcel 2108  wnfc 2886  wral 3063  {crab 3067  Vcvv 3422   class class class wbr 5070   Se wse 5533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-se 5536
This theorem is referenced by:  nfoi  9203
  Copyright terms: Public domain W3C validator