MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfse Structured version   Visualization version   GIF version

Theorem nfse 5590
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nfse 𝑥 𝑅 Se 𝐴

Proof of Theorem nfse
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 5570 . 2 (𝑅 Se 𝐴 ↔ ∀𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V)
2 nffr.a . . 3 𝑥𝐴
3 nfcv 2894 . . . . . 6 𝑥𝑎
4 nffr.r . . . . . 6 𝑥𝑅
5 nfcv 2894 . . . . . 6 𝑥𝑏
63, 4, 5nfbr 5138 . . . . 5 𝑥 𝑎𝑅𝑏
76, 2nfrabw 3432 . . . 4 𝑥{𝑎𝐴𝑎𝑅𝑏}
87nfel1 2911 . . 3 𝑥{𝑎𝐴𝑎𝑅𝑏} ∈ V
92, 8nfralw 3279 . 2 𝑥𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V
101, 9nfxfr 1854 1 𝑥 𝑅 Se 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1784  wcel 2111  wnfc 2879  wral 3047  {crab 3395  Vcvv 3436   class class class wbr 5091   Se wse 5567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-se 5570
This theorem is referenced by:  nfoi  9400
  Copyright terms: Public domain W3C validator