MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfse Structured version   Visualization version   GIF version

Theorem nfse 5614
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nfse 𝑥 𝑅 Se 𝐴

Proof of Theorem nfse
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 5594 . 2 (𝑅 Se 𝐴 ↔ ∀𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V)
2 nffr.a . . 3 𝑥𝐴
3 nfcv 2892 . . . . . 6 𝑥𝑎
4 nffr.r . . . . . 6 𝑥𝑅
5 nfcv 2892 . . . . . 6 𝑥𝑏
63, 4, 5nfbr 5156 . . . . 5 𝑥 𝑎𝑅𝑏
76, 2nfrabw 3446 . . . 4 𝑥{𝑎𝐴𝑎𝑅𝑏}
87nfel1 2909 . . 3 𝑥{𝑎𝐴𝑎𝑅𝑏} ∈ V
92, 8nfralw 3287 . 2 𝑥𝑏𝐴 {𝑎𝐴𝑎𝑅𝑏} ∈ V
101, 9nfxfr 1853 1 𝑥 𝑅 Se 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1783  wcel 2109  wnfc 2877  wral 3045  {crab 3408  Vcvv 3450   class class class wbr 5109   Se wse 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-se 5594
This theorem is referenced by:  nfoi  9473
  Copyright terms: Public domain W3C validator