| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfse | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffr.r | ⊢ Ⅎ𝑥𝑅 |
| nffr.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfse | ⊢ Ⅎ𝑥 𝑅 Se 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-se 5575 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑏 ∈ 𝐴 {𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V) | |
| 2 | nffr.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑥𝑎 | |
| 4 | nffr.r | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
| 5 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑥𝑏 | |
| 6 | 3, 4, 5 | nfbr 5142 | . . . . 5 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
| 7 | 6, 2 | nfrabw 3433 | . . . 4 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} |
| 8 | 7 | nfel1 2912 | . . 3 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V |
| 9 | 2, 8 | nfralw 3280 | . 2 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 {𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V |
| 10 | 1, 9 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝑅 Se 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 ∀wral 3048 {crab 3396 Vcvv 3437 class class class wbr 5095 Se wse 5572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-se 5575 |
| This theorem is referenced by: nfoi 9409 |
| Copyright terms: Public domain | W3C validator |