| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfse | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffr.r | ⊢ Ⅎ𝑥𝑅 |
| nffr.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfse | ⊢ Ⅎ𝑥 𝑅 Se 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-se 5592 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑏 ∈ 𝐴 {𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V) | |
| 2 | nffr.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥𝑎 | |
| 4 | nffr.r | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
| 5 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥𝑏 | |
| 6 | 3, 4, 5 | nfbr 5154 | . . . . 5 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
| 7 | 6, 2 | nfrabw 3443 | . . . 4 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} |
| 8 | 7 | nfel1 2908 | . . 3 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V |
| 9 | 2, 8 | nfralw 3285 | . 2 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 {𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V |
| 10 | 1, 9 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝑅 Se 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 {crab 3405 Vcvv 3447 class class class wbr 5107 Se wse 5589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-se 5592 |
| This theorem is referenced by: nfoi 9467 |
| Copyright terms: Public domain | W3C validator |