![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfse | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | ⊢ Ⅎ𝑥𝑅 |
nffr.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfse | ⊢ Ⅎ𝑥 𝑅 Se 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-se 5646 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑏 ∈ 𝐴 {𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V) | |
2 | nffr.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑥𝑎 | |
4 | nffr.r | . . . . . 6 ⊢ Ⅎ𝑥𝑅 | |
5 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑥𝑏 | |
6 | 3, 4, 5 | nfbr 5198 | . . . . 5 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
7 | 6, 2 | nfrabw 3476 | . . . 4 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} |
8 | 7 | nfel1 2922 | . . 3 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V |
9 | 2, 8 | nfralw 3311 | . 2 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 {𝑎 ∈ 𝐴 ∣ 𝑎𝑅𝑏} ∈ V |
10 | 1, 9 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥 𝑅 Se 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1782 ∈ wcel 2108 Ⅎwnfc 2890 ∀wral 3061 {crab 3436 Vcvv 3481 class class class wbr 5151 Se wse 5643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-se 5646 |
This theorem is referenced by: nfoi 9561 |
Copyright terms: Public domain | W3C validator |