MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfunv Structured version   Visualization version   GIF version

Theorem nfunv 6376
Description: The universal class is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
Assertion
Ref Expression
nfunv ¬ Fun V

Proof of Theorem nfunv
StepHypRef Expression
1 nrelv 5660 . 2 ¬ Rel V
2 funrel 6360 . 2 (Fun V → Rel V)
31, 2mto 200 1 ¬ Fun V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  Vcvv 3480  Rel wrel 5547  Fun wfun 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-opab 5115  df-xp 5548  df-rel 5549  df-fun 6345
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator