|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfunv | Structured version Visualization version GIF version | ||
| Description: The universal class is not a function. (Contributed by Raph Levien, 27-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| nfunv | ⊢ ¬ Fun V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nrelv 5810 | . 2 ⊢ ¬ Rel V | |
| 2 | funrel 6583 | . 2 ⊢ (Fun V → Rel V) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ Fun V | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 Vcvv 3480 Rel wrel 5690 Fun wfun 6555 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 df-xp 5691 df-rel 5692 df-fun 6563 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |