Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nla0001 Structured version   Visualization version   GIF version

Theorem nla0001 43384
Description: Extending a linear order to subsets, the empty set is less than itself. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.)
Hypothesis
Ref Expression
nla0001.defsslt < = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}
Assertion
Ref Expression
nla0001 (𝜑 → ∅ < ∅)
Distinct variable groups:   𝑎,𝑏,𝑥,𝑦   𝑅,𝑎,𝑏   𝑆,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   < (𝑥,𝑦,𝑎,𝑏)

Proof of Theorem nla0001
StepHypRef Expression
1 nla0001.defsslt . 2 < = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}
2 0ex 5289 . . 3 ∅ ∈ V
32a1i 11 . 2 (𝜑 → ∅ ∈ V)
4 0ss 4382 . . 3 ∅ ⊆ 𝑆
54a1i 11 . 2 (𝜑 → ∅ ⊆ 𝑆)
61, 3, 5nla0002 43382 1 (𝜑 → ∅ < ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wral 3050  Vcvv 3464  wss 3933  c0 4315   class class class wbr 5125  {copab 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-xp 5673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator