Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nla0001 Structured version   Visualization version   GIF version

Theorem nla0001 43430
Description: Extending a linear order to subsets, the empty set is less than itself. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.)
Hypothesis
Ref Expression
nla0001.defsslt < = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}
Assertion
Ref Expression
nla0001 (𝜑 → ∅ < ∅)
Distinct variable groups:   𝑎,𝑏,𝑥,𝑦   𝑅,𝑎,𝑏   𝑆,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   < (𝑥,𝑦,𝑎,𝑏)

Proof of Theorem nla0001
StepHypRef Expression
1 nla0001.defsslt . 2 < = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}
2 0ex 5314 . . 3 ∅ ∈ V
32a1i 11 . 2 (𝜑 → ∅ ∈ V)
4 0ss 4407 . . 3 ∅ ⊆ 𝑆
54a1i 11 . 2 (𝜑 → ∅ ⊆ 𝑆)
61, 3, 5nla0002 43428 1 (𝜑 → ∅ < ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1538  wcel 2107  wral 3060  Vcvv 3479  wss 3964  c0 4340   class class class wbr 5149  {copab 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5150  df-opab 5212  df-xp 5696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator