![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nla0002 | Structured version Visualization version GIF version |
Description: Extending a linear order to subsets, the empty set is less than any subset. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.) |
Ref | Expression |
---|---|
nla0001.defsslt | ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} |
nla0001.set | ⊢ (𝜑 → 𝐴 ∈ V) |
nla0002.sset | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
Ref | Expression |
---|---|
nla0002 | ⊢ (𝜑 → ∅ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ V) |
3 | nla0001.set | . 2 ⊢ (𝜑 → 𝐴 ∈ V) | |
4 | 0ss 4423 | . . . 4 ⊢ ∅ ⊆ 𝑆 | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ⊆ 𝑆) |
6 | nla0002.sset | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
7 | ral0 4536 | . . . 4 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥𝑅𝑦 | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥𝑅𝑦) |
9 | 5, 6, 8 | 3jca 1128 | . 2 ⊢ (𝜑 → (∅ ⊆ 𝑆 ∧ 𝐴 ⊆ 𝑆 ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥𝑅𝑦)) |
10 | nla0001.defsslt | . . 3 ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} | |
11 | 10 | rp-brsslt 43385 | . 2 ⊢ (∅ < 𝐴 ↔ ((∅ ∈ V ∧ 𝐴 ∈ V) ∧ (∅ ⊆ 𝑆 ∧ 𝐴 ⊆ 𝑆 ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥𝑅𝑦))) |
12 | 2, 3, 9, 11 | syl21anbrc 1344 | 1 ⊢ (𝜑 → ∅ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 |
This theorem is referenced by: nla0001 43388 |
Copyright terms: Public domain | W3C validator |