| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nla0002 | Structured version Visualization version GIF version | ||
| Description: Extending a linear order to subsets, the empty set is less than any subset. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.) |
| Ref | Expression |
|---|---|
| nla0001.defsslt | ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} |
| nla0001.set | ⊢ (𝜑 → 𝐴 ∈ V) |
| nla0002.sset | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| nla0002 | ⊢ (𝜑 → ∅ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5282 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ V) |
| 3 | nla0001.set | . 2 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 4 | 0ss 4380 | . . . 4 ⊢ ∅ ⊆ 𝑆 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ⊆ 𝑆) |
| 6 | nla0002.sset | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 7 | ral0 4493 | . . . 4 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥𝑅𝑦 | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥𝑅𝑦) |
| 9 | 5, 6, 8 | 3jca 1128 | . 2 ⊢ (𝜑 → (∅ ⊆ 𝑆 ∧ 𝐴 ⊆ 𝑆 ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥𝑅𝑦)) |
| 10 | nla0001.defsslt | . . 3 ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} | |
| 11 | 10 | rp-brsslt 43422 | . 2 ⊢ (∅ < 𝐴 ↔ ((∅ ∈ V ∧ 𝐴 ∈ V) ∧ (∅ ⊆ 𝑆 ∧ 𝐴 ⊆ 𝑆 ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ 𝐴 𝑥𝑅𝑦))) |
| 12 | 2, 3, 9, 11 | syl21anbrc 1345 | 1 ⊢ (𝜑 → ∅ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 {copab 5186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 |
| This theorem is referenced by: nla0001 43425 |
| Copyright terms: Public domain | W3C validator |