Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nla0003 Structured version   Visualization version   GIF version

Theorem nla0003 43466
Description: Extending a linear order to subsets, the empty set is greater than any subset. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.)
Hypotheses
Ref Expression
nla0001.defsslt < = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}
nla0001.set (𝜑𝐴 ∈ V)
nla0002.sset (𝜑𝐴𝑆)
Assertion
Ref Expression
nla0003 (𝜑𝐴 < ∅)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦   𝑅,𝑎,𝑏   𝑆,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   < (𝑥,𝑦,𝑎,𝑏)

Proof of Theorem nla0003
StepHypRef Expression
1 nla0001.set . 2 (𝜑𝐴 ∈ V)
2 0ex 5243 . . 3 ∅ ∈ V
32a1i 11 . 2 (𝜑 → ∅ ∈ V)
4 nla0002.sset . . 3 (𝜑𝐴𝑆)
5 0ss 4347 . . . 4 ∅ ⊆ 𝑆
65a1i 11 . . 3 (𝜑 → ∅ ⊆ 𝑆)
7 ral0 4460 . . . . 5 𝑦 ∈ ∅ ∀𝑥𝐴 𝑥𝑅𝑦
8 ralcom 3260 . . . . 5 (∀𝑦 ∈ ∅ ∀𝑥𝐴 𝑥𝑅𝑦 ↔ ∀𝑥𝐴𝑦 ∈ ∅ 𝑥𝑅𝑦)
97, 8mpbi 230 . . . 4 𝑥𝐴𝑦 ∈ ∅ 𝑥𝑅𝑦
109a1i 11 . . 3 (𝜑 → ∀𝑥𝐴𝑦 ∈ ∅ 𝑥𝑅𝑦)
114, 6, 103jca 1128 . 2 (𝜑 → (𝐴𝑆 ∧ ∅ ⊆ 𝑆 ∧ ∀𝑥𝐴𝑦 ∈ ∅ 𝑥𝑅𝑦))
12 nla0001.defsslt . . 3 < = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}
1312rp-brsslt 43464 . 2 (𝐴 < ∅ ↔ ((𝐴 ∈ V ∧ ∅ ∈ V) ∧ (𝐴𝑆 ∧ ∅ ⊆ 𝑆 ∧ ∀𝑥𝐴𝑦 ∈ ∅ 𝑥𝑅𝑦)))
141, 3, 11, 13syl21anbrc 1345 1 (𝜑𝐴 < ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  c0 4280   class class class wbr 5089  {copab 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator