Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nla0003 Structured version   Visualization version   GIF version

Theorem nla0003 43387
Description: Extending a linear order to subsets, the empty set is greater than any subset. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.)
Hypotheses
Ref Expression
nla0001.defsslt < = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}
nla0001.set (𝜑𝐴 ∈ V)
nla0002.sset (𝜑𝐴𝑆)
Assertion
Ref Expression
nla0003 (𝜑𝐴 < ∅)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦   𝑅,𝑎,𝑏   𝑆,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   < (𝑥,𝑦,𝑎,𝑏)

Proof of Theorem nla0003
StepHypRef Expression
1 nla0001.set . 2 (𝜑𝐴 ∈ V)
2 0ex 5325 . . 3 ∅ ∈ V
32a1i 11 . 2 (𝜑 → ∅ ∈ V)
4 nla0002.sset . . 3 (𝜑𝐴𝑆)
5 0ss 4423 . . . 4 ∅ ⊆ 𝑆
65a1i 11 . . 3 (𝜑 → ∅ ⊆ 𝑆)
7 ral0 4536 . . . . 5 𝑦 ∈ ∅ ∀𝑥𝐴 𝑥𝑅𝑦
8 ralcom 3295 . . . . 5 (∀𝑦 ∈ ∅ ∀𝑥𝐴 𝑥𝑅𝑦 ↔ ∀𝑥𝐴𝑦 ∈ ∅ 𝑥𝑅𝑦)
97, 8mpbi 230 . . . 4 𝑥𝐴𝑦 ∈ ∅ 𝑥𝑅𝑦
109a1i 11 . . 3 (𝜑 → ∀𝑥𝐴𝑦 ∈ ∅ 𝑥𝑅𝑦)
114, 6, 103jca 1128 . 2 (𝜑 → (𝐴𝑆 ∧ ∅ ⊆ 𝑆 ∧ ∀𝑥𝐴𝑦 ∈ ∅ 𝑥𝑅𝑦))
12 nla0001.defsslt . . 3 < = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}
1312rp-brsslt 43385 . 2 (𝐴 < ∅ ↔ ((𝐴 ∈ V ∧ ∅ ∈ V) ∧ (𝐴𝑆 ∧ ∅ ⊆ 𝑆 ∧ ∀𝑥𝐴𝑦 ∈ ∅ 𝑥𝑅𝑦)))
141, 3, 11, 13syl21anbrc 1344 1 (𝜑𝐴 < ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  c0 4352   class class class wbr 5166  {copab 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator