![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nla0003 | Structured version Visualization version GIF version |
Description: Extending a linear order to subsets, the empty set is greater than any subset. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.) |
Ref | Expression |
---|---|
nla0001.defsslt | ⊢ < = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} |
nla0001.set | ⊢ (𝜑 → 𝐴 ∈ V) |
nla0002.sset | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
Ref | Expression |
---|---|
nla0003 | ⊢ (𝜑 → 𝐴 < ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nla0001.set | . 2 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | 0ex 5300 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ V) |
4 | nla0002.sset | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
5 | 0ss 4391 | . . . 4 ⊢ ∅ ⊆ 𝑆 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ⊆ 𝑆) |
7 | ral0 4507 | . . . . 5 ⊢ ∀𝑦 ∈ ∅ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑦 | |
8 | ralcom 3280 | . . . . 5 ⊢ (∀𝑦 ∈ ∅ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ∅ 𝑥𝑅𝑦) | |
9 | 7, 8 | mpbi 229 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ∅ 𝑥𝑅𝑦 |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ∅ 𝑥𝑅𝑦) |
11 | 4, 6, 10 | 3jca 1125 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝑆 ∧ ∅ ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ∅ 𝑥𝑅𝑦)) |
12 | nla0001.defsslt | . . 3 ⊢ < = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} | |
13 | 12 | rp-brsslt 42747 | . 2 ⊢ (𝐴 < ∅ ↔ ((𝐴 ∈ V ∧ ∅ ∈ V) ∧ (𝐴 ⊆ 𝑆 ∧ ∅ ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ∅ 𝑥𝑅𝑦))) |
14 | 1, 3, 11, 13 | syl21anbrc 1341 | 1 ⊢ (𝜑 → 𝐴 < ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 ⊆ wss 3943 ∅c0 4317 class class class wbr 5141 {copab 5203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |