| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nonrel | Structured version Visualization version GIF version | ||
| Description: A non-relation is equal to the base class with all ordered pairs removed. (Contributed by RP, 25-Oct-2020.) |
| Ref | Expression |
|---|---|
| nonrel | ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 6139 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
| 2 | 1 | difeq2i 4073 | . 2 ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (𝐴 ∩ (V × V))) |
| 3 | difin 4222 | . 2 ⊢ (𝐴 ∖ (𝐴 ∩ (V × V))) = (𝐴 ∖ (V × V)) | |
| 4 | 2, 3 | eqtri 2754 | 1 ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∖ cdif 3899 ∩ cin 3901 × cxp 5614 ◡ccnv 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 |
| This theorem is referenced by: elnonrel 43617 |
| Copyright terms: Public domain | W3C validator |