Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nonrel Structured version   Visualization version   GIF version

Theorem nonrel 43616
Description: A non-relation is equal to the base class with all ordered pairs removed. (Contributed by RP, 25-Oct-2020.)
Assertion
Ref Expression
nonrel (𝐴𝐴) = (𝐴 ∖ (V × V))

Proof of Theorem nonrel
StepHypRef Expression
1 cnvcnv 6139 . . 3 𝐴 = (𝐴 ∩ (V × V))
21difeq2i 4073 . 2 (𝐴𝐴) = (𝐴 ∖ (𝐴 ∩ (V × V)))
3 difin 4222 . 2 (𝐴 ∖ (𝐴 ∩ (V × V))) = (𝐴 ∖ (V × V))
42, 3eqtri 2754 1 (𝐴𝐴) = (𝐴 ∖ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cdif 3899  cin 3901   × cxp 5614  ccnv 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624
This theorem is referenced by:  elnonrel  43617
  Copyright terms: Public domain W3C validator