![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nonrel | Structured version Visualization version GIF version |
Description: A non-relation is equal to the base class with all ordered pairs removed. (Contributed by RP, 25-Oct-2020.) |
Ref | Expression |
---|---|
nonrel | ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 6213 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
2 | 1 | difeq2i 4132 | . 2 ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (𝐴 ∩ (V × V))) |
3 | difin 4277 | . 2 ⊢ (𝐴 ∖ (𝐴 ∩ (V × V))) = (𝐴 ∖ (V × V)) | |
4 | 2, 3 | eqtri 2762 | 1 ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 Vcvv 3477 ∖ cdif 3959 ∩ cin 3961 × cxp 5686 ◡ccnv 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 |
This theorem is referenced by: elnonrel 43574 |
Copyright terms: Public domain | W3C validator |