Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nonrel Structured version   Visualization version   GIF version

Theorem nonrel 43573
Description: A non-relation is equal to the base class with all ordered pairs removed. (Contributed by RP, 25-Oct-2020.)
Assertion
Ref Expression
nonrel (𝐴𝐴) = (𝐴 ∖ (V × V))

Proof of Theorem nonrel
StepHypRef Expression
1 cnvcnv 6213 . . 3 𝐴 = (𝐴 ∩ (V × V))
21difeq2i 4132 . 2 (𝐴𝐴) = (𝐴 ∖ (𝐴 ∩ (V × V)))
3 difin 4277 . 2 (𝐴 ∖ (𝐴 ∩ (V × V))) = (𝐴 ∖ (V × V))
42, 3eqtri 2762 1 (𝐴𝐴) = (𝐴 ∖ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  Vcvv 3477  cdif 3959  cin 3961   × cxp 5686  ccnv 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-xp 5694  df-rel 5695  df-cnv 5696
This theorem is referenced by:  elnonrel  43574
  Copyright terms: Public domain W3C validator