![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elnonrel | Structured version Visualization version GIF version |
Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.) |
Ref | Expression |
---|---|
elnonrel | ⊢ (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nonrel 42335 | . . 3 ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) | |
2 | 1 | eleq2i 2826 | . 2 ⊢ (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ ◡◡𝐴) ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V))) |
3 | eldif 3959 | . . 3 ⊢ (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V))) | |
4 | opelxp 5713 | . . . . . 6 ⊢ (⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V)) | |
5 | 4 | notbii 320 | . . . . 5 ⊢ (¬ ⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
6 | 5 | anbi2i 624 | . . . 4 ⊢ ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
7 | opprc 4897 | . . . . . 6 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨𝑋, 𝑌⟩ = ∅) | |
8 | 7 | eleq1d 2819 | . . . . 5 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (⟨𝑋, 𝑌⟩ ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
9 | 8 | pm5.32ri 577 | . . . 4 ⊢ ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
10 | 6, 9 | bitri 275 | . . 3 ⊢ ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
11 | 3, 10 | bitri 275 | . 2 ⊢ (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
12 | 2, 11 | bitri 275 | 1 ⊢ (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 Vcvv 3475 ∖ cdif 3946 ∅c0 4323 ⟨cop 4635 × cxp 5675 ◡ccnv 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |