Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnonrel Structured version   Visualization version   GIF version

Theorem elnonrel 43064
Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.)
Assertion
Ref Expression
elnonrel (⟨𝑋, 𝑌⟩ ∈ (𝐴𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))

Proof of Theorem elnonrel
StepHypRef Expression
1 nonrel 43063 . . 3 (𝐴𝐴) = (𝐴 ∖ (V × V))
21eleq2i 2821 . 2 (⟨𝑋, 𝑌⟩ ∈ (𝐴𝐴) ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)))
3 eldif 3959 . . 3 (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)))
4 opelxp 5718 . . . . . 6 (⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V))
54notbii 319 . . . . 5 (¬ ⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))
65anbi2i 621 . . . 4 ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
7 opprc 4901 . . . . . 6 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨𝑋, 𝑌⟩ = ∅)
87eleq1d 2814 . . . . 5 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (⟨𝑋, 𝑌⟩ ∈ 𝐴 ↔ ∅ ∈ 𝐴))
98pm5.32ri 574 . . . 4 ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
106, 9bitri 274 . . 3 ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
113, 10bitri 274 . 2 (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
122, 11bitri 274 1 (⟨𝑋, 𝑌⟩ ∈ (𝐴𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394  wcel 2098  Vcvv 3473  cdif 3946  c0 4326  cop 4638   × cxp 5680  ccnv 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-rel 5689  df-cnv 5690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator