Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnonrel Structured version   Visualization version   GIF version

Theorem elnonrel 41566
Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.)
Assertion
Ref Expression
elnonrel (⟨𝑋, 𝑌⟩ ∈ (𝐴𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))

Proof of Theorem elnonrel
StepHypRef Expression
1 nonrel 41565 . . 3 (𝐴𝐴) = (𝐴 ∖ (V × V))
21eleq2i 2828 . 2 (⟨𝑋, 𝑌⟩ ∈ (𝐴𝐴) ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)))
3 eldif 3908 . . 3 (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)))
4 opelxp 5657 . . . . . 6 (⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V))
54notbii 319 . . . . 5 (¬ ⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))
65anbi2i 623 . . . 4 ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
7 opprc 4841 . . . . . 6 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨𝑋, 𝑌⟩ = ∅)
87eleq1d 2821 . . . . 5 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (⟨𝑋, 𝑌⟩ ∈ 𝐴 ↔ ∅ ∈ 𝐴))
98pm5.32ri 576 . . . 4 ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
106, 9bitri 274 . . 3 ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
113, 10bitri 274 . 2 (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
122, 11bitri 274 1 (⟨𝑋, 𝑌⟩ ∈ (𝐴𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wcel 2105  Vcvv 3441  cdif 3895  c0 4270  cop 4580   × cxp 5619  ccnv 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-br 5094  df-opab 5156  df-xp 5627  df-rel 5628  df-cnv 5629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator