Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnonrel Structured version   Visualization version   GIF version

Theorem elnonrel 39952
Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.)
Assertion
Ref Expression
elnonrel (⟨𝑋, 𝑌⟩ ∈ (𝐴𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))

Proof of Theorem elnonrel
StepHypRef Expression
1 nonrel 39951 . . 3 (𝐴𝐴) = (𝐴 ∖ (V × V))
21eleq2i 2906 . 2 (⟨𝑋, 𝑌⟩ ∈ (𝐴𝐴) ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)))
3 eldif 3948 . . 3 (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)))
4 opelxp 5593 . . . . . 6 (⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V))
54notbii 322 . . . . 5 (¬ ⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))
65anbi2i 624 . . . 4 ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
7 opprc 4828 . . . . . 6 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨𝑋, 𝑌⟩ = ∅)
87eleq1d 2899 . . . . 5 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (⟨𝑋, 𝑌⟩ ∈ 𝐴 ↔ ∅ ∈ 𝐴))
98pm5.32ri 578 . . . 4 ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
106, 9bitri 277 . . 3 ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
113, 10bitri 277 . 2 (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
122, 11bitri 277 1 (⟨𝑋, 𝑌⟩ ∈ (𝐴𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wcel 2114  Vcvv 3496  cdif 3935  c0 4293  cop 4575   × cxp 5555  ccnv 5556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-xp 5563  df-rel 5564  df-cnv 5565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator