![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elnonrel | Structured version Visualization version GIF version |
Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.) |
Ref | Expression |
---|---|
elnonrel | ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nonrel 43546 | . . 3 ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ 〈𝑋, 𝑌〉 ∈ (𝐴 ∖ (V × V))) |
3 | eldif 3986 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ (V × V)) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ 〈𝑋, 𝑌〉 ∈ (V × V))) | |
4 | opelxp 5736 | . . . . . 6 ⊢ (〈𝑋, 𝑌〉 ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V)) | |
5 | 4 | notbii 320 | . . . . 5 ⊢ (¬ 〈𝑋, 𝑌〉 ∈ (V × V) ↔ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
6 | 5 | anbi2i 622 | . . . 4 ⊢ ((〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ 〈𝑋, 𝑌〉 ∈ (V × V)) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
7 | opprc 4920 | . . . . . 6 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈𝑋, 𝑌〉 = ∅) | |
8 | 7 | eleq1d 2829 | . . . . 5 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (〈𝑋, 𝑌〉 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
9 | 8 | pm5.32ri 575 | . . . 4 ⊢ ((〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
10 | 6, 9 | bitri 275 | . . 3 ⊢ ((〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ 〈𝑋, 𝑌〉 ∈ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
11 | 3, 10 | bitri 275 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
12 | 2, 11 | bitri 275 | 1 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 〈cop 4654 × cxp 5698 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |