![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elnonrel | Structured version Visualization version GIF version |
Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.) |
Ref | Expression |
---|---|
elnonrel | ⊢ (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nonrel 43063 | . . 3 ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) | |
2 | 1 | eleq2i 2821 | . 2 ⊢ (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ ◡◡𝐴) ↔ ⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V))) |
3 | eldif 3959 | . . 3 ⊢ (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V))) | |
4 | opelxp 5718 | . . . . . 6 ⊢ (⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V)) | |
5 | 4 | notbii 319 | . . . . 5 ⊢ (¬ ⟨𝑋, 𝑌⟩ ∈ (V × V) ↔ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
6 | 5 | anbi2i 621 | . . . 4 ⊢ ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)) ↔ (⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
7 | opprc 4901 | . . . . . 6 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨𝑋, 𝑌⟩ = ∅) | |
8 | 7 | eleq1d 2814 | . . . . 5 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (⟨𝑋, 𝑌⟩ ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
9 | 8 | pm5.32ri 574 | . . . 4 ⊢ ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
10 | 6, 9 | bitri 274 | . . 3 ⊢ ((⟨𝑋, 𝑌⟩ ∈ 𝐴 ∧ ¬ ⟨𝑋, 𝑌⟩ ∈ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
11 | 3, 10 | bitri 274 | . 2 ⊢ (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
12 | 2, 11 | bitri 274 | 1 ⊢ (⟨𝑋, 𝑌⟩ ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 Vcvv 3473 ∖ cdif 3946 ∅c0 4326 ⟨cop 4638 × cxp 5680 ◡ccnv 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |