Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elnonrel | Structured version Visualization version GIF version |
Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.) |
Ref | Expression |
---|---|
elnonrel | ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nonrel 41145 | . . 3 ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ 〈𝑋, 𝑌〉 ∈ (𝐴 ∖ (V × V))) |
3 | eldif 3901 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ (V × V)) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ 〈𝑋, 𝑌〉 ∈ (V × V))) | |
4 | opelxp 5624 | . . . . . 6 ⊢ (〈𝑋, 𝑌〉 ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V)) | |
5 | 4 | notbii 319 | . . . . 5 ⊢ (¬ 〈𝑋, 𝑌〉 ∈ (V × V) ↔ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
6 | 5 | anbi2i 622 | . . . 4 ⊢ ((〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ 〈𝑋, 𝑌〉 ∈ (V × V)) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
7 | opprc 4832 | . . . . . 6 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈𝑋, 𝑌〉 = ∅) | |
8 | 7 | eleq1d 2824 | . . . . 5 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (〈𝑋, 𝑌〉 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
9 | 8 | pm5.32ri 575 | . . . 4 ⊢ ((〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
10 | 6, 9 | bitri 274 | . . 3 ⊢ ((〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ 〈𝑋, 𝑌〉 ∈ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
11 | 3, 10 | bitri 274 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
12 | 2, 11 | bitri 274 | 1 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∈ wcel 2109 Vcvv 3430 ∖ cdif 3888 ∅c0 4261 〈cop 4572 × cxp 5586 ◡ccnv 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |