![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elnonrel | Structured version Visualization version GIF version |
Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.) |
Ref | Expression |
---|---|
elnonrel | ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nonrel 43158 | . . 3 ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) | |
2 | 1 | eleq2i 2817 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ 〈𝑋, 𝑌〉 ∈ (𝐴 ∖ (V × V))) |
3 | eldif 3954 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ (V × V)) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ 〈𝑋, 𝑌〉 ∈ (V × V))) | |
4 | opelxp 5714 | . . . . . 6 ⊢ (〈𝑋, 𝑌〉 ∈ (V × V) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ V)) | |
5 | 4 | notbii 319 | . . . . 5 ⊢ (¬ 〈𝑋, 𝑌〉 ∈ (V × V) ↔ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
6 | 5 | anbi2i 621 | . . . 4 ⊢ ((〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ 〈𝑋, 𝑌〉 ∈ (V × V)) ↔ (〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
7 | opprc 4898 | . . . . . 6 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈𝑋, 𝑌〉 = ∅) | |
8 | 7 | eleq1d 2810 | . . . . 5 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (〈𝑋, 𝑌〉 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
9 | 8 | pm5.32ri 574 | . . . 4 ⊢ ((〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
10 | 6, 9 | bitri 274 | . . 3 ⊢ ((〈𝑋, 𝑌〉 ∈ 𝐴 ∧ ¬ 〈𝑋, 𝑌〉 ∈ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
11 | 3, 10 | bitri 274 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ (V × V)) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
12 | 2, 11 | bitri 274 | 1 ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 Vcvv 3461 ∖ cdif 3941 ∅c0 4322 〈cop 4636 × cxp 5676 ◡ccnv 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-cnv 5686 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |