MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Structured version   Visualization version   GIF version

Theorem cnvcnv 6139
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 cnvin 6091 . . 3 (𝐴(V × V)) = (𝐴(V × V))
2 cnvin 6091 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
32cnveqi 5813 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
4 relcnv 6052 . . . . . 6 Rel 𝐴
5 df-rel 5621 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
64, 5mpbi 230 . . . . 5 𝐴 ⊆ (V × V)
7 relxp 5632 . . . . . 6 Rel (V × V)
8 dfrel2 6136 . . . . . 6 (Rel (V × V) ↔ (V × V) = (V × V))
97, 8mpbi 230 . . . . 5 (V × V) = (V × V)
106, 9sseqtrri 3979 . . . 4 𝐴(V × V)
11 dfss 3916 . . . 4 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
1210, 11mpbi 230 . . 3 𝐴 = (𝐴(V × V))
131, 3, 123eqtr4ri 2765 . 2 𝐴 = (𝐴 ∩ (V × V))
14 relinxp 5753 . . 3 Rel (𝐴 ∩ (V × V))
15 dfrel2 6136 . . 3 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1614, 15mpbi 230 . 2 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1713, 16eqtri 2754 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cin 3896  wss 3897   × cxp 5612  ccnv 5613  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622
This theorem is referenced by:  cnvcnv2  6140  cnvcnvss  6141  cnvrescnv  6142  structcnvcnv  17064  strfv2d  17112  elcnvcnvintab  43674  relintab  43675  nonrel  43676  elcnvcnvlem  43691  cnvcnvintabd  43692  tposresg  48977
  Copyright terms: Public domain W3C validator