MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Structured version   Visualization version   GIF version

Theorem cnvcnv 6092
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 cnvin 6045 . . 3 (𝐴(V × V)) = (𝐴(V × V))
2 cnvin 6045 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
32cnveqi 5780 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
4 relcnv 6009 . . . . . 6 Rel 𝐴
5 df-rel 5595 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
64, 5mpbi 229 . . . . 5 𝐴 ⊆ (V × V)
7 relxp 5606 . . . . . 6 Rel (V × V)
8 dfrel2 6089 . . . . . 6 (Rel (V × V) ↔ (V × V) = (V × V))
97, 8mpbi 229 . . . . 5 (V × V) = (V × V)
106, 9sseqtrri 3962 . . . 4 𝐴(V × V)
11 dfss 3909 . . . 4 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
1210, 11mpbi 229 . . 3 𝐴 = (𝐴(V × V))
131, 3, 123eqtr4ri 2778 . 2 𝐴 = (𝐴 ∩ (V × V))
14 relinxp 5721 . . 3 Rel (𝐴 ∩ (V × V))
15 dfrel2 6089 . . 3 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1614, 15mpbi 229 . 2 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1713, 16eqtri 2767 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3430  cin 3890  wss 3891   × cxp 5586  ccnv 5587  Rel wrel 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596
This theorem is referenced by:  cnvcnv2  6093  cnvcnvss  6094  cnvrescnv  6095  structcnvcnv  16835  strfv2d  16884  elcnvcnvintab  41143  relintab  41144  nonrel  41145  elcnvcnvlem  41160  cnvcnvintabd  41161
  Copyright terms: Public domain W3C validator