| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnv | Structured version Visualization version GIF version | ||
| Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| cnvcnv | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvin 6144 | . . 3 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
| 2 | cnvin 6144 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
| 3 | 2 | cnveqi 5865 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
| 4 | relcnv 6102 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
| 5 | df-rel 5672 | . . . . . 6 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ ◡◡𝐴 ⊆ (V × V) |
| 7 | relxp 5683 | . . . . . 6 ⊢ Rel (V × V) | |
| 8 | dfrel2 6189 | . . . . . 6 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
| 9 | 7, 8 | mpbi 230 | . . . . 5 ⊢ ◡◡(V × V) = (V × V) |
| 10 | 6, 9 | sseqtrri 4013 | . . . 4 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
| 11 | dfss 3950 | . . . 4 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
| 12 | 10, 11 | mpbi 230 | . . 3 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
| 13 | 1, 3, 12 | 3eqtr4ri 2768 | . 2 ⊢ ◡◡𝐴 = ◡◡(𝐴 ∩ (V × V)) |
| 14 | relinxp 5804 | . . 3 ⊢ Rel (𝐴 ∩ (V × V)) | |
| 15 | dfrel2 6189 | . . 3 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
| 16 | 14, 15 | mpbi 230 | . 2 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
| 17 | 13, 16 | eqtri 2757 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 Vcvv 3463 ∩ cin 3930 ⊆ wss 3931 × cxp 5663 ◡ccnv 5664 Rel wrel 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 |
| This theorem is referenced by: cnvcnv2 6193 cnvcnvss 6194 cnvrescnv 6195 structcnvcnv 17172 strfv2d 17220 elcnvcnvintab 43557 relintab 43558 nonrel 43559 elcnvcnvlem 43574 cnvcnvintabd 43575 tposresg 48737 |
| Copyright terms: Public domain | W3C validator |