| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnv | Structured version Visualization version GIF version | ||
| Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| cnvcnv | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvin 6091 | . . 3 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
| 2 | cnvin 6091 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
| 3 | 2 | cnveqi 5813 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
| 4 | relcnv 6052 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
| 5 | df-rel 5621 | . . . . . 6 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
| 6 | 4, 5 | mpbi 230 | . . . . 5 ⊢ ◡◡𝐴 ⊆ (V × V) |
| 7 | relxp 5632 | . . . . . 6 ⊢ Rel (V × V) | |
| 8 | dfrel2 6136 | . . . . . 6 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
| 9 | 7, 8 | mpbi 230 | . . . . 5 ⊢ ◡◡(V × V) = (V × V) |
| 10 | 6, 9 | sseqtrri 3979 | . . . 4 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
| 11 | dfss 3916 | . . . 4 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
| 12 | 10, 11 | mpbi 230 | . . 3 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
| 13 | 1, 3, 12 | 3eqtr4ri 2765 | . 2 ⊢ ◡◡𝐴 = ◡◡(𝐴 ∩ (V × V)) |
| 14 | relinxp 5753 | . . 3 ⊢ Rel (𝐴 ∩ (V × V)) | |
| 15 | dfrel2 6136 | . . 3 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
| 16 | 14, 15 | mpbi 230 | . 2 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
| 17 | 13, 16 | eqtri 2754 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 × cxp 5612 ◡ccnv 5613 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 |
| This theorem is referenced by: cnvcnv2 6140 cnvcnvss 6141 cnvrescnv 6142 structcnvcnv 17064 strfv2d 17112 elcnvcnvintab 43674 relintab 43675 nonrel 43676 elcnvcnvlem 43691 cnvcnvintabd 43692 tposresg 48977 |
| Copyright terms: Public domain | W3C validator |