![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvcnv | Structured version Visualization version GIF version |
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.) |
Ref | Expression |
---|---|
cnvcnv | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvin 5757 | . . 3 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
2 | cnvin 5757 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
3 | 2 | cnveqi 5500 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
4 | relcnv 5720 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
5 | df-rel 5319 | . . . . . 6 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
6 | 4, 5 | mpbi 222 | . . . . 5 ⊢ ◡◡𝐴 ⊆ (V × V) |
7 | relxp 5330 | . . . . . 6 ⊢ Rel (V × V) | |
8 | dfrel2 5800 | . . . . . 6 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
9 | 7, 8 | mpbi 222 | . . . . 5 ⊢ ◡◡(V × V) = (V × V) |
10 | 6, 9 | sseqtr4i 3834 | . . . 4 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
11 | dfss 3784 | . . . 4 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
12 | 10, 11 | mpbi 222 | . . 3 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
13 | 1, 3, 12 | 3eqtr4ri 2832 | . 2 ⊢ ◡◡𝐴 = ◡◡(𝐴 ∩ (V × V)) |
14 | inss2 4029 | . . . 4 ⊢ (𝐴 ∩ (V × V)) ⊆ (V × V) | |
15 | df-rel 5319 | . . . 4 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V)) | |
16 | 14, 15 | mpbir 223 | . . 3 ⊢ Rel (𝐴 ∩ (V × V)) |
17 | dfrel2 5800 | . . 3 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
18 | 16, 17 | mpbi 222 | . 2 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
19 | 13, 18 | eqtri 2821 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 Vcvv 3385 ∩ cin 3768 ⊆ wss 3769 × cxp 5310 ◡ccnv 5311 Rel wrel 5317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 df-cnv 5320 |
This theorem is referenced by: cnvcnv2 5804 cnvcnvss 5805 structcnvcnv 16198 strfv2d 16230 elcnvcnvintab 38671 relintab 38672 nonrel 38673 elcnvcnvlem 38688 cnvcnvintabd 38689 |
Copyright terms: Public domain | W3C validator |