MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Structured version   Visualization version   GIF version

Theorem cnvcnv 6089
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 cnvin 6042 . . 3 (𝐴(V × V)) = (𝐴(V × V))
2 cnvin 6042 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
32cnveqi 5777 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
4 relcnv 6006 . . . . . 6 Rel 𝐴
5 df-rel 5592 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
64, 5mpbi 229 . . . . 5 𝐴 ⊆ (V × V)
7 relxp 5603 . . . . . 6 Rel (V × V)
8 dfrel2 6086 . . . . . 6 (Rel (V × V) ↔ (V × V) = (V × V))
97, 8mpbi 229 . . . . 5 (V × V) = (V × V)
106, 9sseqtrri 3958 . . . 4 𝐴(V × V)
11 dfss 3905 . . . 4 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
1210, 11mpbi 229 . . 3 𝐴 = (𝐴(V × V))
131, 3, 123eqtr4ri 2777 . 2 𝐴 = (𝐴 ∩ (V × V))
14 relinxp 5718 . . 3 Rel (𝐴 ∩ (V × V))
15 dfrel2 6086 . . 3 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1614, 15mpbi 229 . 2 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1713, 16eqtri 2766 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3430  cin 3886  wss 3887   × cxp 5583  ccnv 5584  Rel wrel 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-br 5075  df-opab 5137  df-xp 5591  df-rel 5592  df-cnv 5593
This theorem is referenced by:  cnvcnv2  6090  cnvcnvss  6091  cnvrescnv  6092  structcnvcnv  16842  strfv2d  16891  elcnvcnvintab  41149  relintab  41150  nonrel  41151  elcnvcnvlem  41166  cnvcnvintabd  41167
  Copyright terms: Public domain W3C validator