MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Structured version   Visualization version   GIF version

Theorem cnvcnv 6223
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 cnvin 6176 . . 3 (𝐴(V × V)) = (𝐴(V × V))
2 cnvin 6176 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
32cnveqi 5899 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
4 relcnv 6134 . . . . . 6 Rel 𝐴
5 df-rel 5707 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
64, 5mpbi 230 . . . . 5 𝐴 ⊆ (V × V)
7 relxp 5718 . . . . . 6 Rel (V × V)
8 dfrel2 6220 . . . . . 6 (Rel (V × V) ↔ (V × V) = (V × V))
97, 8mpbi 230 . . . . 5 (V × V) = (V × V)
106, 9sseqtrri 4046 . . . 4 𝐴(V × V)
11 dfss 3995 . . . 4 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
1210, 11mpbi 230 . . 3 𝐴 = (𝐴(V × V))
131, 3, 123eqtr4ri 2779 . 2 𝐴 = (𝐴 ∩ (V × V))
14 relinxp 5838 . . 3 Rel (𝐴 ∩ (V × V))
15 dfrel2 6220 . . 3 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1614, 15mpbi 230 . 2 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1713, 16eqtri 2768 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  cin 3975  wss 3976   × cxp 5698  ccnv 5699  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by:  cnvcnv2  6224  cnvcnvss  6225  cnvrescnv  6226  structcnvcnv  17200  strfv2d  17249  elcnvcnvintab  43544  relintab  43545  nonrel  43546  elcnvcnvlem  43561  cnvcnvintabd  43562
  Copyright terms: Public domain W3C validator