MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Structured version   Visualization version   GIF version

Theorem cnvcnv 6165
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 cnvin 6117 . . 3 (𝐴(V × V)) = (𝐴(V × V))
2 cnvin 6117 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
32cnveqi 5838 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
4 relcnv 6075 . . . . . 6 Rel 𝐴
5 df-rel 5645 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
64, 5mpbi 230 . . . . 5 𝐴 ⊆ (V × V)
7 relxp 5656 . . . . . 6 Rel (V × V)
8 dfrel2 6162 . . . . . 6 (Rel (V × V) ↔ (V × V) = (V × V))
97, 8mpbi 230 . . . . 5 (V × V) = (V × V)
106, 9sseqtrri 3996 . . . 4 𝐴(V × V)
11 dfss 3933 . . . 4 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
1210, 11mpbi 230 . . 3 𝐴 = (𝐴(V × V))
131, 3, 123eqtr4ri 2763 . 2 𝐴 = (𝐴 ∩ (V × V))
14 relinxp 5777 . . 3 Rel (𝐴 ∩ (V × V))
15 dfrel2 6162 . . 3 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1614, 15mpbi 230 . 2 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1713, 16eqtri 2752 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3447  cin 3913  wss 3914   × cxp 5636  ccnv 5637  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646
This theorem is referenced by:  cnvcnv2  6166  cnvcnvss  6167  cnvrescnv  6168  structcnvcnv  17123  strfv2d  17171  elcnvcnvintab  43571  relintab  43572  nonrel  43573  elcnvcnvlem  43588  cnvcnvintabd  43589  tposresg  48866
  Copyright terms: Public domain W3C validator