MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Structured version   Visualization version   GIF version

Theorem cnvcnv 6192
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 cnvin 6145 . . 3 (𝐴(V × V)) = (𝐴(V × V))
2 cnvin 6145 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
32cnveqi 5875 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
4 relcnv 6104 . . . . . 6 Rel 𝐴
5 df-rel 5684 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
64, 5mpbi 229 . . . . 5 𝐴 ⊆ (V × V)
7 relxp 5695 . . . . . 6 Rel (V × V)
8 dfrel2 6189 . . . . . 6 (Rel (V × V) ↔ (V × V) = (V × V))
97, 8mpbi 229 . . . . 5 (V × V) = (V × V)
106, 9sseqtrri 4020 . . . 4 𝐴(V × V)
11 dfss 3967 . . . 4 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
1210, 11mpbi 229 . . 3 𝐴 = (𝐴(V × V))
131, 3, 123eqtr4ri 2772 . 2 𝐴 = (𝐴 ∩ (V × V))
14 relinxp 5815 . . 3 Rel (𝐴 ∩ (V × V))
15 dfrel2 6189 . . 3 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1614, 15mpbi 229 . 2 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1713, 16eqtri 2761 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  Vcvv 3475  cin 3948  wss 3949   × cxp 5675  ccnv 5676  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685
This theorem is referenced by:  cnvcnv2  6193  cnvcnvss  6194  cnvrescnv  6195  structcnvcnv  17086  strfv2d  17135  elcnvcnvintab  42381  relintab  42382  nonrel  42383  elcnvcnvlem  42398  cnvcnvintabd  42399
  Copyright terms: Public domain W3C validator