MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Structured version   Visualization version   GIF version

Theorem cnvcnv 6110
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 cnvin 6063 . . 3 (𝐴(V × V)) = (𝐴(V × V))
2 cnvin 6063 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
32cnveqi 5796 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
4 relcnv 6022 . . . . . 6 Rel 𝐴
5 df-rel 5607 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
64, 5mpbi 229 . . . . 5 𝐴 ⊆ (V × V)
7 relxp 5618 . . . . . 6 Rel (V × V)
8 dfrel2 6107 . . . . . 6 (Rel (V × V) ↔ (V × V) = (V × V))
97, 8mpbi 229 . . . . 5 (V × V) = (V × V)
106, 9sseqtrri 3963 . . . 4 𝐴(V × V)
11 dfss 3910 . . . 4 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
1210, 11mpbi 229 . . 3 𝐴 = (𝐴(V × V))
131, 3, 123eqtr4ri 2775 . 2 𝐴 = (𝐴 ∩ (V × V))
14 relinxp 5736 . . 3 Rel (𝐴 ∩ (V × V))
15 dfrel2 6107 . . 3 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1614, 15mpbi 229 . 2 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1713, 16eqtri 2764 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3437  cin 3891  wss 3892   × cxp 5598  ccnv 5599  Rel wrel 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-cnv 5608
This theorem is referenced by:  cnvcnv2  6111  cnvcnvss  6112  cnvrescnv  6113  structcnvcnv  16903  strfv2d  16952  elcnvcnvintab  41403  relintab  41404  nonrel  41405  elcnvcnvlem  41420  cnvcnvintabd  41421
  Copyright terms: Public domain W3C validator