![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvcnv | Structured version Visualization version GIF version |
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.) |
Ref | Expression |
---|---|
cnvcnv | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvin 6144 | . . 3 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
2 | cnvin 6144 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
3 | 2 | cnveqi 5872 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
4 | relcnv 6103 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
5 | df-rel 5680 | . . . . . 6 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
6 | 4, 5 | mpbi 229 | . . . . 5 ⊢ ◡◡𝐴 ⊆ (V × V) |
7 | relxp 5691 | . . . . . 6 ⊢ Rel (V × V) | |
8 | dfrel2 6188 | . . . . . 6 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
9 | 7, 8 | mpbi 229 | . . . . 5 ⊢ ◡◡(V × V) = (V × V) |
10 | 6, 9 | sseqtrri 4016 | . . . 4 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
11 | dfss 3963 | . . . 4 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
12 | 10, 11 | mpbi 229 | . . 3 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
13 | 1, 3, 12 | 3eqtr4ri 2767 | . 2 ⊢ ◡◡𝐴 = ◡◡(𝐴 ∩ (V × V)) |
14 | relinxp 5811 | . . 3 ⊢ Rel (𝐴 ∩ (V × V)) | |
15 | dfrel2 6188 | . . 3 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
16 | 14, 15 | mpbi 229 | . 2 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
17 | 13, 16 | eqtri 2756 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 Vcvv 3470 ∩ cin 3944 ⊆ wss 3945 × cxp 5671 ◡ccnv 5672 Rel wrel 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-xp 5679 df-rel 5680 df-cnv 5681 |
This theorem is referenced by: cnvcnv2 6192 cnvcnvss 6193 cnvrescnv 6194 structcnvcnv 17116 strfv2d 17165 elcnvcnvintab 43003 relintab 43004 nonrel 43005 elcnvcnvlem 43020 cnvcnvintabd 43021 |
Copyright terms: Public domain | W3C validator |