MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Structured version   Visualization version   GIF version

Theorem cnvcnv 6191
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 cnvin 6144 . . 3 (𝐴(V × V)) = (𝐴(V × V))
2 cnvin 6144 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
32cnveqi 5872 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
4 relcnv 6103 . . . . . 6 Rel 𝐴
5 df-rel 5680 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
64, 5mpbi 229 . . . . 5 𝐴 ⊆ (V × V)
7 relxp 5691 . . . . . 6 Rel (V × V)
8 dfrel2 6188 . . . . . 6 (Rel (V × V) ↔ (V × V) = (V × V))
97, 8mpbi 229 . . . . 5 (V × V) = (V × V)
106, 9sseqtrri 4016 . . . 4 𝐴(V × V)
11 dfss 3963 . . . 4 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
1210, 11mpbi 229 . . 3 𝐴 = (𝐴(V × V))
131, 3, 123eqtr4ri 2767 . 2 𝐴 = (𝐴 ∩ (V × V))
14 relinxp 5811 . . 3 Rel (𝐴 ∩ (V × V))
15 dfrel2 6188 . . 3 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1614, 15mpbi 229 . 2 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1713, 16eqtri 2756 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  Vcvv 3470  cin 3944  wss 3945   × cxp 5671  ccnv 5672  Rel wrel 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144  df-opab 5206  df-xp 5679  df-rel 5680  df-cnv 5681
This theorem is referenced by:  cnvcnv2  6192  cnvcnvss  6193  cnvrescnv  6194  structcnvcnv  17116  strfv2d  17165  elcnvcnvintab  43003  relintab  43004  nonrel  43005  elcnvcnvlem  43020  cnvcnvintabd  43021
  Copyright terms: Public domain W3C validator