Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvcnv | Structured version Visualization version GIF version |
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.) |
Ref | Expression |
---|---|
cnvcnv | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvin 6063 | . . 3 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
2 | cnvin 6063 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
3 | 2 | cnveqi 5796 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
4 | relcnv 6022 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
5 | df-rel 5607 | . . . . . 6 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
6 | 4, 5 | mpbi 229 | . . . . 5 ⊢ ◡◡𝐴 ⊆ (V × V) |
7 | relxp 5618 | . . . . . 6 ⊢ Rel (V × V) | |
8 | dfrel2 6107 | . . . . . 6 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
9 | 7, 8 | mpbi 229 | . . . . 5 ⊢ ◡◡(V × V) = (V × V) |
10 | 6, 9 | sseqtrri 3963 | . . . 4 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
11 | dfss 3910 | . . . 4 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
12 | 10, 11 | mpbi 229 | . . 3 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
13 | 1, 3, 12 | 3eqtr4ri 2775 | . 2 ⊢ ◡◡𝐴 = ◡◡(𝐴 ∩ (V × V)) |
14 | relinxp 5736 | . . 3 ⊢ Rel (𝐴 ∩ (V × V)) | |
15 | dfrel2 6107 | . . 3 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
16 | 14, 15 | mpbi 229 | . 2 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
17 | 13, 16 | eqtri 2764 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3437 ∩ cin 3891 ⊆ wss 3892 × cxp 5598 ◡ccnv 5599 Rel wrel 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 |
This theorem is referenced by: cnvcnv2 6111 cnvcnvss 6112 cnvrescnv 6113 structcnvcnv 16903 strfv2d 16952 elcnvcnvintab 41403 relintab 41404 nonrel 41405 elcnvcnvlem 41420 cnvcnvintabd 41421 |
Copyright terms: Public domain | W3C validator |