![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvcnv | Structured version Visualization version GIF version |
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.) |
Ref | Expression |
---|---|
cnvcnv | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvin 6145 | . . 3 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
2 | cnvin 6145 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
3 | 2 | cnveqi 5875 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
4 | relcnv 6104 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
5 | df-rel 5684 | . . . . . 6 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
6 | 4, 5 | mpbi 229 | . . . . 5 ⊢ ◡◡𝐴 ⊆ (V × V) |
7 | relxp 5695 | . . . . . 6 ⊢ Rel (V × V) | |
8 | dfrel2 6189 | . . . . . 6 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
9 | 7, 8 | mpbi 229 | . . . . 5 ⊢ ◡◡(V × V) = (V × V) |
10 | 6, 9 | sseqtrri 4020 | . . . 4 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
11 | dfss 3967 | . . . 4 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
12 | 10, 11 | mpbi 229 | . . 3 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
13 | 1, 3, 12 | 3eqtr4ri 2772 | . 2 ⊢ ◡◡𝐴 = ◡◡(𝐴 ∩ (V × V)) |
14 | relinxp 5815 | . . 3 ⊢ Rel (𝐴 ∩ (V × V)) | |
15 | dfrel2 6189 | . . 3 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
16 | 14, 15 | mpbi 229 | . 2 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
17 | 13, 16 | eqtri 2761 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 Vcvv 3475 ∩ cin 3948 ⊆ wss 3949 × cxp 5675 ◡ccnv 5676 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 |
This theorem is referenced by: cnvcnv2 6193 cnvcnvss 6194 cnvrescnv 6195 structcnvcnv 17086 strfv2d 17135 elcnvcnvintab 42381 relintab 42382 nonrel 42383 elcnvcnvlem 42398 cnvcnvintabd 42399 |
Copyright terms: Public domain | W3C validator |