MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Structured version   Visualization version   GIF version

Theorem cnvcnv 6192
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 cnvin 6144 . . 3 (𝐴(V × V)) = (𝐴(V × V))
2 cnvin 6144 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
32cnveqi 5865 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
4 relcnv 6102 . . . . . 6 Rel 𝐴
5 df-rel 5672 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
64, 5mpbi 230 . . . . 5 𝐴 ⊆ (V × V)
7 relxp 5683 . . . . . 6 Rel (V × V)
8 dfrel2 6189 . . . . . 6 (Rel (V × V) ↔ (V × V) = (V × V))
97, 8mpbi 230 . . . . 5 (V × V) = (V × V)
106, 9sseqtrri 4013 . . . 4 𝐴(V × V)
11 dfss 3950 . . . 4 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
1210, 11mpbi 230 . . 3 𝐴 = (𝐴(V × V))
131, 3, 123eqtr4ri 2768 . 2 𝐴 = (𝐴 ∩ (V × V))
14 relinxp 5804 . . 3 Rel (𝐴 ∩ (V × V))
15 dfrel2 6189 . . 3 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1614, 15mpbi 230 . 2 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1713, 16eqtri 2757 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3463  cin 3930  wss 3931   × cxp 5663  ccnv 5664  Rel wrel 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673
This theorem is referenced by:  cnvcnv2  6193  cnvcnvss  6194  cnvrescnv  6195  structcnvcnv  17172  strfv2d  17220  elcnvcnvintab  43557  relintab  43558  nonrel  43559  elcnvcnvlem  43574  cnvcnvintabd  43575  tposresg  48737
  Copyright terms: Public domain W3C validator