MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lplig Structured version   Visualization version   GIF version

Theorem n0lplig 28841
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.)
Assertion
Ref Expression
n0lplig (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)

Proof of Theorem n0lplig
StepHypRef Expression
1 nsnlplig 28839 . 2 (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺)
2 vprc 5243 . . . . 5 ¬ V ∈ V
3 snprc 4659 . . . . 5 (¬ V ∈ V ↔ {V} = ∅)
42, 3mpbi 229 . . . 4 {V} = ∅
54eqcomi 2749 . . 3 ∅ = {V}
65eleq1i 2831 . 2 (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺)
71, 6sylnibr 329 1 (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2110  Vcvv 3431  c0 4262  {csn 4567  Pligcplig 28832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-v 3433  df-dif 3895  df-in 3899  df-ss 3909  df-nul 4263  df-sn 4568  df-uni 4846  df-plig 28833
This theorem is referenced by:  pliguhgr  28844
  Copyright terms: Public domain W3C validator