MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lplig Structured version   Visualization version   GIF version

Theorem n0lplig 30449
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.)
Assertion
Ref Expression
n0lplig (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)

Proof of Theorem n0lplig
StepHypRef Expression
1 nsnlplig 30447 . 2 (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺)
2 vprc 5297 . . . . 5 ¬ V ∈ V
3 snprc 4699 . . . . 5 (¬ V ∈ V ↔ {V} = ∅)
42, 3mpbi 230 . . . 4 {V} = ∅
54eqcomi 2743 . . 3 ∅ = {V}
65eleq1i 2824 . 2 (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺)
71, 6sylnibr 329 1 (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  Vcvv 3464  c0 4315  {csn 4608  Pligcplig 30440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-v 3466  df-dif 3936  df-ss 3950  df-nul 4316  df-sn 4609  df-uni 4890  df-plig 30441
This theorem is referenced by:  pliguhgr  30452
  Copyright terms: Public domain W3C validator