MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lplig Structured version   Visualization version   GIF version

Theorem n0lplig 28746
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.)
Assertion
Ref Expression
n0lplig (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)

Proof of Theorem n0lplig
StepHypRef Expression
1 nsnlplig 28744 . 2 (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺)
2 vprc 5234 . . . . 5 ¬ V ∈ V
3 snprc 4650 . . . . 5 (¬ V ∈ V ↔ {V} = ∅)
42, 3mpbi 229 . . . 4 {V} = ∅
54eqcomi 2747 . . 3 ∅ = {V}
65eleq1i 2829 . 2 (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺)
71, 6sylnibr 328 1 (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {csn 4558  Pligcplig 28737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-uni 4837  df-plig 28738
This theorem is referenced by:  pliguhgr  28749
  Copyright terms: Public domain W3C validator