MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lplig Structured version   Visualization version   GIF version

Theorem n0lplig 30484
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.)
Assertion
Ref Expression
n0lplig (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)

Proof of Theorem n0lplig
StepHypRef Expression
1 nsnlplig 30482 . 2 (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺)
2 vprc 5257 . . . . 5 ¬ V ∈ V
3 snprc 4671 . . . . 5 (¬ V ∈ V ↔ {V} = ∅)
42, 3mpbi 230 . . . 4 {V} = ∅
54eqcomi 2742 . . 3 ∅ = {V}
65eleq1i 2824 . 2 (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺)
71, 6sylnibr 329 1 (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  {csn 4577  Pligcplig 30475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-v 3439  df-dif 3901  df-ss 3915  df-nul 4283  df-sn 4578  df-uni 4861  df-plig 30476
This theorem is referenced by:  pliguhgr  30487
  Copyright terms: Public domain W3C validator