![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0lplig | Structured version Visualization version GIF version |
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.) |
Ref | Expression |
---|---|
n0lplig | ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsnlplig 30513 | . 2 ⊢ (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺) | |
2 | vprc 5333 | . . . . 5 ⊢ ¬ V ∈ V | |
3 | snprc 4742 | . . . . 5 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
4 | 2, 3 | mpbi 230 | . . . 4 ⊢ {V} = ∅ |
5 | 4 | eqcomi 2749 | . . 3 ⊢ ∅ = {V} |
6 | 5 | eleq1i 2835 | . 2 ⊢ (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺) |
7 | 1, 6 | sylnibr 329 | 1 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 Pligcplig 30506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-sn 4649 df-uni 4932 df-plig 30507 |
This theorem is referenced by: pliguhgr 30518 |
Copyright terms: Public domain | W3C validator |