Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n0lplig | Structured version Visualization version GIF version |
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.) |
Ref | Expression |
---|---|
n0lplig | ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsnlplig 28839 | . 2 ⊢ (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺) | |
2 | vprc 5243 | . . . . 5 ⊢ ¬ V ∈ V | |
3 | snprc 4659 | . . . . 5 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
4 | 2, 3 | mpbi 229 | . . . 4 ⊢ {V} = ∅ |
5 | 4 | eqcomi 2749 | . . 3 ⊢ ∅ = {V} |
6 | 5 | eleq1i 2831 | . 2 ⊢ (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺) |
7 | 1, 6 | sylnibr 329 | 1 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∅c0 4262 {csn 4567 Pligcplig 28832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-v 3433 df-dif 3895 df-in 3899 df-ss 3909 df-nul 4263 df-sn 4568 df-uni 4846 df-plig 28833 |
This theorem is referenced by: pliguhgr 28844 |
Copyright terms: Public domain | W3C validator |