| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0lplig | Structured version Visualization version GIF version | ||
| Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.) |
| Ref | Expression |
|---|---|
| n0lplig | ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsnlplig 30447 | . 2 ⊢ (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺) | |
| 2 | vprc 5297 | . . . . 5 ⊢ ¬ V ∈ V | |
| 3 | snprc 4699 | . . . . 5 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
| 4 | 2, 3 | mpbi 230 | . . . 4 ⊢ {V} = ∅ |
| 5 | 4 | eqcomi 2743 | . . 3 ⊢ ∅ = {V} |
| 6 | 5 | eleq1i 2824 | . 2 ⊢ (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺) |
| 7 | 1, 6 | sylnibr 329 | 1 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∅c0 4315 {csn 4608 Pligcplig 30440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-v 3466 df-dif 3936 df-ss 3950 df-nul 4316 df-sn 4609 df-uni 4890 df-plig 30441 |
| This theorem is referenced by: pliguhgr 30452 |
| Copyright terms: Public domain | W3C validator |