MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lplig Structured version   Visualization version   GIF version

Theorem n0lplig 30412
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.)
Assertion
Ref Expression
n0lplig (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)

Proof of Theorem n0lplig
StepHypRef Expression
1 nsnlplig 30410 . 2 (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺)
2 vprc 5270 . . . . 5 ¬ V ∈ V
3 snprc 4681 . . . . 5 (¬ V ∈ V ↔ {V} = ∅)
42, 3mpbi 230 . . . 4 {V} = ∅
54eqcomi 2738 . . 3 ∅ = {V}
65eleq1i 2819 . 2 (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺)
71, 6sylnibr 329 1 (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  {csn 4589  Pligcplig 30403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-v 3449  df-dif 3917  df-ss 3931  df-nul 4297  df-sn 4590  df-uni 4872  df-plig 30404
This theorem is referenced by:  pliguhgr  30415
  Copyright terms: Public domain W3C validator