MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lplig Structured version   Visualization version   GIF version

Theorem n0lplig 30411
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.)
Assertion
Ref Expression
n0lplig (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)

Proof of Theorem n0lplig
StepHypRef Expression
1 nsnlplig 30409 . 2 (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺)
2 vprc 5311 . . . . 5 ¬ V ∈ V
3 snprc 4717 . . . . 5 (¬ V ∈ V ↔ {V} = ∅)
42, 3mpbi 229 . . . 4 {V} = ∅
54eqcomi 2735 . . 3 ∅ = {V}
65eleq1i 2817 . 2 (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺)
71, 6sylnibr 328 1 (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  Vcvv 3463  c0 4323  {csn 4624  Pligcplig 30402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5295
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-v 3465  df-dif 3950  df-ss 3964  df-nul 4324  df-sn 4625  df-uni 4907  df-plig 30403
This theorem is referenced by:  pliguhgr  30414
  Copyright terms: Public domain W3C validator