| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0lplig | Structured version Visualization version GIF version | ||
| Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.) |
| Ref | Expression |
|---|---|
| n0lplig | ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsnlplig 30410 | . 2 ⊢ (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺) | |
| 2 | vprc 5270 | . . . . 5 ⊢ ¬ V ∈ V | |
| 3 | snprc 4681 | . . . . 5 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
| 4 | 2, 3 | mpbi 230 | . . . 4 ⊢ {V} = ∅ |
| 5 | 4 | eqcomi 2738 | . . 3 ⊢ ∅ = {V} |
| 6 | 5 | eleq1i 2819 | . 2 ⊢ (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺) |
| 7 | 1, 6 | sylnibr 329 | 1 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {csn 4589 Pligcplig 30403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-v 3449 df-dif 3917 df-ss 3931 df-nul 4297 df-sn 4590 df-uni 4872 df-plig 30404 |
| This theorem is referenced by: pliguhgr 30415 |
| Copyright terms: Public domain | W3C validator |