![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0lplig | Structured version Visualization version GIF version |
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.) |
Ref | Expression |
---|---|
n0lplig | ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsnlplig 30409 | . 2 ⊢ (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺) | |
2 | vprc 5311 | . . . . 5 ⊢ ¬ V ∈ V | |
3 | snprc 4717 | . . . . 5 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
4 | 2, 3 | mpbi 229 | . . . 4 ⊢ {V} = ∅ |
5 | 4 | eqcomi 2735 | . . 3 ⊢ ∅ = {V} |
6 | 5 | eleq1i 2817 | . 2 ⊢ (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺) |
7 | 1, 6 | sylnibr 328 | 1 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3463 ∅c0 4323 {csn 4624 Pligcplig 30402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5295 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-v 3465 df-dif 3950 df-ss 3964 df-nul 4324 df-sn 4625 df-uni 4907 df-plig 30403 |
This theorem is referenced by: pliguhgr 30414 |
Copyright terms: Public domain | W3C validator |