Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n0lplig | Structured version Visualization version GIF version |
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.) |
Ref | Expression |
---|---|
n0lplig | ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsnlplig 28744 | . 2 ⊢ (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺) | |
2 | vprc 5234 | . . . . 5 ⊢ ¬ V ∈ V | |
3 | snprc 4650 | . . . . 5 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
4 | 2, 3 | mpbi 229 | . . . 4 ⊢ {V} = ∅ |
5 | 4 | eqcomi 2747 | . . 3 ⊢ ∅ = {V} |
6 | 5 | eleq1i 2829 | . 2 ⊢ (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺) |
7 | 1, 6 | sylnibr 328 | 1 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 Pligcplig 28737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-uni 4837 df-plig 28738 |
This theorem is referenced by: pliguhgr 28749 |
Copyright terms: Public domain | W3C validator |