MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lplig Structured version   Visualization version   GIF version

Theorem n0lplig 29723
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.)
Assertion
Ref Expression
n0lplig (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)

Proof of Theorem n0lplig
StepHypRef Expression
1 nsnlplig 29721 . 2 (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺)
2 vprc 5314 . . . . 5 ¬ V ∈ V
3 snprc 4720 . . . . 5 (¬ V ∈ V ↔ {V} = ∅)
42, 3mpbi 229 . . . 4 {V} = ∅
54eqcomi 2741 . . 3 ∅ = {V}
65eleq1i 2824 . 2 (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺)
71, 6sylnibr 328 1 (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  c0 4321  {csn 4627  Pligcplig 29714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-v 3476  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4322  df-sn 4628  df-uni 4908  df-plig 29715
This theorem is referenced by:  pliguhgr  29726
  Copyright terms: Public domain W3C validator