Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrk1k3eqk13 Structured version   Visualization version   GIF version

Theorem ntrk1k3eqk13 44041
Description: An interior function is both monotone and sub-linear if and only if it is finitely linear. (Contributed by RP, 18-Jun-2021.)
Assertion
Ref Expression
ntrk1k3eqk13 ((∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)))
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡

Proof of Theorem ntrk1k3eqk13
StepHypRef Expression
1 r19.26-2 3126 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∩ (𝐼𝑡)) ∧ ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))) ↔ (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∩ (𝐼𝑡)) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))))
2 eqss 3979 . . 3 ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∩ (𝐼𝑡)) ∧ ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))))
322ralbii 3116 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∩ (𝐼𝑡)) ∧ ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))))
4 isotone2 44040 . . 3 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∩ (𝐼𝑡)))
54anbi1i 624 . 2 ((∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))) ↔ (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∩ (𝐼𝑡)) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))))
61, 3, 53bitr4ri 304 1 ((∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3052  cin 3930  wss 3931  𝒫 cpw 4580  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator