Step | Hyp | Ref
| Expression |
1 | | sseq1 3946 |
. . . 4
⊢ (𝑎 = 𝑐 → (𝑎 ⊆ 𝑏 ↔ 𝑐 ⊆ 𝑏)) |
2 | | fveq2 6774 |
. . . . 5
⊢ (𝑎 = 𝑐 → (𝐹‘𝑎) = (𝐹‘𝑐)) |
3 | 2 | sseq1d 3952 |
. . . 4
⊢ (𝑎 = 𝑐 → ((𝐹‘𝑎) ⊆ (𝐹‘𝑏) ↔ (𝐹‘𝑐) ⊆ (𝐹‘𝑏))) |
4 | 1, 3 | imbi12d 345 |
. . 3
⊢ (𝑎 = 𝑐 → ((𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ (𝑐 ⊆ 𝑏 → (𝐹‘𝑐) ⊆ (𝐹‘𝑏)))) |
5 | | sseq2 3947 |
. . . 4
⊢ (𝑏 = 𝑑 → (𝑐 ⊆ 𝑏 ↔ 𝑐 ⊆ 𝑑)) |
6 | | fveq2 6774 |
. . . . 5
⊢ (𝑏 = 𝑑 → (𝐹‘𝑏) = (𝐹‘𝑑)) |
7 | 6 | sseq2d 3953 |
. . . 4
⊢ (𝑏 = 𝑑 → ((𝐹‘𝑐) ⊆ (𝐹‘𝑏) ↔ (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
8 | 5, 7 | imbi12d 345 |
. . 3
⊢ (𝑏 = 𝑑 → ((𝑐 ⊆ 𝑏 → (𝐹‘𝑐) ⊆ (𝐹‘𝑏)) ↔ (𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)))) |
9 | 4, 8 | cbvral2vw 3396 |
. 2
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
10 | | inss1 4162 |
. . . . . 6
⊢ (𝑎 ∩ 𝑏) ⊆ 𝑎 |
11 | | inss2 4163 |
. . . . . . . . . 10
⊢ (𝑎 ∩ 𝑏) ⊆ 𝑏 |
12 | | elpwi 4542 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴) |
13 | 11, 12 | sstrid 3932 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝒫 𝐴 → (𝑎 ∩ 𝑏) ⊆ 𝐴) |
14 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑏 ∈ V |
15 | 14 | inex2 5242 |
. . . . . . . . . 10
⊢ (𝑎 ∩ 𝑏) ∈ V |
16 | 15 | elpw 4537 |
. . . . . . . . 9
⊢ ((𝑎 ∩ 𝑏) ∈ 𝒫 𝐴 ↔ (𝑎 ∩ 𝑏) ⊆ 𝐴) |
17 | 13, 16 | sylibr 233 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝒫 𝐴 → (𝑎 ∩ 𝑏) ∈ 𝒫 𝐴) |
18 | 17 | ad2antll 726 |
. . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝑎 ∩ 𝑏) ∈ 𝒫 𝐴) |
19 | | simprl 768 |
. . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → 𝑎 ∈ 𝒫 𝐴) |
20 | | simpl 483 |
. . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
21 | | sseq1 3946 |
. . . . . . . . 9
⊢ (𝑐 = (𝑎 ∩ 𝑏) → (𝑐 ⊆ 𝑑 ↔ (𝑎 ∩ 𝑏) ⊆ 𝑑)) |
22 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑐 = (𝑎 ∩ 𝑏) → (𝐹‘𝑐) = (𝐹‘(𝑎 ∩ 𝑏))) |
23 | 22 | sseq1d 3952 |
. . . . . . . . 9
⊢ (𝑐 = (𝑎 ∩ 𝑏) → ((𝐹‘𝑐) ⊆ (𝐹‘𝑑) ↔ (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑))) |
24 | 21, 23 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑐 = (𝑎 ∩ 𝑏) → ((𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ↔ ((𝑎 ∩ 𝑏) ⊆ 𝑑 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑)))) |
25 | | sseq2 3947 |
. . . . . . . . 9
⊢ (𝑑 = 𝑎 → ((𝑎 ∩ 𝑏) ⊆ 𝑑 ↔ (𝑎 ∩ 𝑏) ⊆ 𝑎)) |
26 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑎 → (𝐹‘𝑑) = (𝐹‘𝑎)) |
27 | 26 | sseq2d 3953 |
. . . . . . . . 9
⊢ (𝑑 = 𝑎 → ((𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑) ↔ (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑎))) |
28 | 25, 27 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑑 = 𝑎 → (((𝑎 ∩ 𝑏) ⊆ 𝑑 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑)) ↔ ((𝑎 ∩ 𝑏) ⊆ 𝑎 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑎)))) |
29 | 24, 28 | rspc2va 3571 |
. . . . . . 7
⊢ ((((𝑎 ∩ 𝑏) ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) → ((𝑎 ∩ 𝑏) ⊆ 𝑎 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑎))) |
30 | 18, 19, 20, 29 | syl21anc 835 |
. . . . . 6
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ((𝑎 ∩ 𝑏) ⊆ 𝑎 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑎))) |
31 | 10, 30 | mpi 20 |
. . . . 5
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑎)) |
32 | | simprr 770 |
. . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → 𝑏 ∈ 𝒫 𝐴) |
33 | | sseq2 3947 |
. . . . . . . . 9
⊢ (𝑑 = 𝑏 → ((𝑎 ∩ 𝑏) ⊆ 𝑑 ↔ (𝑎 ∩ 𝑏) ⊆ 𝑏)) |
34 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑏 → (𝐹‘𝑑) = (𝐹‘𝑏)) |
35 | 34 | sseq2d 3953 |
. . . . . . . . 9
⊢ (𝑑 = 𝑏 → ((𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑) ↔ (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑏))) |
36 | 33, 35 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑑 = 𝑏 → (((𝑎 ∩ 𝑏) ⊆ 𝑑 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑)) ↔ ((𝑎 ∩ 𝑏) ⊆ 𝑏 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑏)))) |
37 | 24, 36 | rspc2va 3571 |
. . . . . . 7
⊢ ((((𝑎 ∩ 𝑏) ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴) ∧ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) → ((𝑎 ∩ 𝑏) ⊆ 𝑏 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑏))) |
38 | 18, 32, 20, 37 | syl21anc 835 |
. . . . . 6
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ((𝑎 ∩ 𝑏) ⊆ 𝑏 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑏))) |
39 | 11, 38 | mpi 20 |
. . . . 5
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑏)) |
40 | 31, 39 | ssind 4166 |
. . . 4
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏))) |
41 | 40 | ralrimivva 3123 |
. . 3
⊢
(∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) → ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏))) |
42 | | dfss 3905 |
. . . . 5
⊢ (𝑐 ⊆ 𝑑 ↔ 𝑐 = (𝑐 ∩ 𝑑)) |
43 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑐 = (𝑐 ∩ 𝑑) → (𝐹‘𝑐) = (𝐹‘(𝑐 ∩ 𝑑))) |
44 | 43 | adantl 482 |
. . . . . . 7
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ 𝑐 = (𝑐 ∩ 𝑑)) → (𝐹‘𝑐) = (𝐹‘(𝑐 ∩ 𝑑))) |
45 | | ineq1 4139 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑐 → (𝑎 ∩ 𝑏) = (𝑐 ∩ 𝑏)) |
46 | 45 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → (𝐹‘(𝑎 ∩ 𝑏)) = (𝐹‘(𝑐 ∩ 𝑏))) |
47 | 2 | ineq1d 4145 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) = ((𝐹‘𝑐) ∩ (𝐹‘𝑏))) |
48 | 46, 47 | sseq12d 3954 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑐 → ((𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ↔ (𝐹‘(𝑐 ∩ 𝑏)) ⊆ ((𝐹‘𝑐) ∩ (𝐹‘𝑏)))) |
49 | | ineq2 4140 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑑 → (𝑐 ∩ 𝑏) = (𝑐 ∩ 𝑑)) |
50 | 49 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑑 → (𝐹‘(𝑐 ∩ 𝑏)) = (𝐹‘(𝑐 ∩ 𝑑))) |
51 | 6 | ineq2d 4146 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑑 → ((𝐹‘𝑐) ∩ (𝐹‘𝑏)) = ((𝐹‘𝑐) ∩ (𝐹‘𝑑))) |
52 | 50, 51 | sseq12d 3954 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑑 → ((𝐹‘(𝑐 ∩ 𝑏)) ⊆ ((𝐹‘𝑐) ∩ (𝐹‘𝑏)) ↔ (𝐹‘(𝑐 ∩ 𝑑)) ⊆ ((𝐹‘𝑐) ∩ (𝐹‘𝑑)))) |
53 | 48, 52 | rspc2va 3571 |
. . . . . . . . . 10
⊢ (((𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴) ∧ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏))) → (𝐹‘(𝑐 ∩ 𝑑)) ⊆ ((𝐹‘𝑐) ∩ (𝐹‘𝑑))) |
54 | 53 | ancoms 459 |
. . . . . . . . 9
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝐹‘(𝑐 ∩ 𝑑)) ⊆ ((𝐹‘𝑐) ∩ (𝐹‘𝑑))) |
55 | | inss2 4163 |
. . . . . . . . 9
⊢ ((𝐹‘𝑐) ∩ (𝐹‘𝑑)) ⊆ (𝐹‘𝑑) |
56 | 54, 55 | sstrdi 3933 |
. . . . . . . 8
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝐹‘(𝑐 ∩ 𝑑)) ⊆ (𝐹‘𝑑)) |
57 | 56 | adantr 481 |
. . . . . . 7
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ 𝑐 = (𝑐 ∩ 𝑑)) → (𝐹‘(𝑐 ∩ 𝑑)) ⊆ (𝐹‘𝑑)) |
58 | 44, 57 | eqsstrd 3959 |
. . . . . 6
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ 𝑐 = (𝑐 ∩ 𝑑)) → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) |
59 | 58 | ex 413 |
. . . . 5
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝑐 = (𝑐 ∩ 𝑑) → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
60 | 42, 59 | syl5bi 241 |
. . . 4
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
61 | 60 | ralrimivva 3123 |
. . 3
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) → ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
62 | 41, 61 | impbii 208 |
. 2
⊢
(∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ↔ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏))) |
63 | 9, 62 | bitri 274 |
1
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏))) |