| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sseq1 4009 | . . . 4
⊢ (𝑎 = 𝑐 → (𝑎 ⊆ 𝑏 ↔ 𝑐 ⊆ 𝑏)) | 
| 2 |  | fveq2 6906 | . . . . 5
⊢ (𝑎 = 𝑐 → (𝐹‘𝑎) = (𝐹‘𝑐)) | 
| 3 | 2 | sseq1d 4015 | . . . 4
⊢ (𝑎 = 𝑐 → ((𝐹‘𝑎) ⊆ (𝐹‘𝑏) ↔ (𝐹‘𝑐) ⊆ (𝐹‘𝑏))) | 
| 4 | 1, 3 | imbi12d 344 | . . 3
⊢ (𝑎 = 𝑐 → ((𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ (𝑐 ⊆ 𝑏 → (𝐹‘𝑐) ⊆ (𝐹‘𝑏)))) | 
| 5 |  | sseq2 4010 | . . . 4
⊢ (𝑏 = 𝑑 → (𝑐 ⊆ 𝑏 ↔ 𝑐 ⊆ 𝑑)) | 
| 6 |  | fveq2 6906 | . . . . 5
⊢ (𝑏 = 𝑑 → (𝐹‘𝑏) = (𝐹‘𝑑)) | 
| 7 | 6 | sseq2d 4016 | . . . 4
⊢ (𝑏 = 𝑑 → ((𝐹‘𝑐) ⊆ (𝐹‘𝑏) ↔ (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 8 | 5, 7 | imbi12d 344 | . . 3
⊢ (𝑏 = 𝑑 → ((𝑐 ⊆ 𝑏 → (𝐹‘𝑐) ⊆ (𝐹‘𝑏)) ↔ (𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)))) | 
| 9 | 4, 8 | cbvral2vw 3241 | . 2
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 10 |  | inss1 4237 | . . . . . 6
⊢ (𝑎 ∩ 𝑏) ⊆ 𝑎 | 
| 11 |  | inss2 4238 | . . . . . . . . . 10
⊢ (𝑎 ∩ 𝑏) ⊆ 𝑏 | 
| 12 |  | elpwi 4607 | . . . . . . . . . 10
⊢ (𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴) | 
| 13 | 11, 12 | sstrid 3995 | . . . . . . . . 9
⊢ (𝑏 ∈ 𝒫 𝐴 → (𝑎 ∩ 𝑏) ⊆ 𝐴) | 
| 14 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑏 ∈ V | 
| 15 | 14 | inex2 5318 | . . . . . . . . . 10
⊢ (𝑎 ∩ 𝑏) ∈ V | 
| 16 | 15 | elpw 4604 | . . . . . . . . 9
⊢ ((𝑎 ∩ 𝑏) ∈ 𝒫 𝐴 ↔ (𝑎 ∩ 𝑏) ⊆ 𝐴) | 
| 17 | 13, 16 | sylibr 234 | . . . . . . . 8
⊢ (𝑏 ∈ 𝒫 𝐴 → (𝑎 ∩ 𝑏) ∈ 𝒫 𝐴) | 
| 18 | 17 | ad2antll 729 | . . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝑎 ∩ 𝑏) ∈ 𝒫 𝐴) | 
| 19 |  | simprl 771 | . . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → 𝑎 ∈ 𝒫 𝐴) | 
| 20 |  | simpl 482 | . . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 21 |  | sseq1 4009 | . . . . . . . . 9
⊢ (𝑐 = (𝑎 ∩ 𝑏) → (𝑐 ⊆ 𝑑 ↔ (𝑎 ∩ 𝑏) ⊆ 𝑑)) | 
| 22 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑐 = (𝑎 ∩ 𝑏) → (𝐹‘𝑐) = (𝐹‘(𝑎 ∩ 𝑏))) | 
| 23 | 22 | sseq1d 4015 | . . . . . . . . 9
⊢ (𝑐 = (𝑎 ∩ 𝑏) → ((𝐹‘𝑐) ⊆ (𝐹‘𝑑) ↔ (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑))) | 
| 24 | 21, 23 | imbi12d 344 | . . . . . . . 8
⊢ (𝑐 = (𝑎 ∩ 𝑏) → ((𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ↔ ((𝑎 ∩ 𝑏) ⊆ 𝑑 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑)))) | 
| 25 |  | sseq2 4010 | . . . . . . . . 9
⊢ (𝑑 = 𝑎 → ((𝑎 ∩ 𝑏) ⊆ 𝑑 ↔ (𝑎 ∩ 𝑏) ⊆ 𝑎)) | 
| 26 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑑 = 𝑎 → (𝐹‘𝑑) = (𝐹‘𝑎)) | 
| 27 | 26 | sseq2d 4016 | . . . . . . . . 9
⊢ (𝑑 = 𝑎 → ((𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑) ↔ (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑎))) | 
| 28 | 25, 27 | imbi12d 344 | . . . . . . . 8
⊢ (𝑑 = 𝑎 → (((𝑎 ∩ 𝑏) ⊆ 𝑑 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑)) ↔ ((𝑎 ∩ 𝑏) ⊆ 𝑎 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑎)))) | 
| 29 | 24, 28 | rspc2va 3634 | . . . . . . 7
⊢ ((((𝑎 ∩ 𝑏) ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴) ∧ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) → ((𝑎 ∩ 𝑏) ⊆ 𝑎 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑎))) | 
| 30 | 18, 19, 20, 29 | syl21anc 838 | . . . . . 6
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ((𝑎 ∩ 𝑏) ⊆ 𝑎 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑎))) | 
| 31 | 10, 30 | mpi 20 | . . . . 5
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑎)) | 
| 32 |  | simprr 773 | . . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → 𝑏 ∈ 𝒫 𝐴) | 
| 33 |  | sseq2 4010 | . . . . . . . . 9
⊢ (𝑑 = 𝑏 → ((𝑎 ∩ 𝑏) ⊆ 𝑑 ↔ (𝑎 ∩ 𝑏) ⊆ 𝑏)) | 
| 34 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑑 = 𝑏 → (𝐹‘𝑑) = (𝐹‘𝑏)) | 
| 35 | 34 | sseq2d 4016 | . . . . . . . . 9
⊢ (𝑑 = 𝑏 → ((𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑) ↔ (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑏))) | 
| 36 | 33, 35 | imbi12d 344 | . . . . . . . 8
⊢ (𝑑 = 𝑏 → (((𝑎 ∩ 𝑏) ⊆ 𝑑 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑑)) ↔ ((𝑎 ∩ 𝑏) ⊆ 𝑏 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑏)))) | 
| 37 | 24, 36 | rspc2va 3634 | . . . . . . 7
⊢ ((((𝑎 ∩ 𝑏) ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴) ∧ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) → ((𝑎 ∩ 𝑏) ⊆ 𝑏 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑏))) | 
| 38 | 18, 32, 20, 37 | syl21anc 838 | . . . . . 6
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ((𝑎 ∩ 𝑏) ⊆ 𝑏 → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑏))) | 
| 39 | 11, 38 | mpi 20 | . . . . 5
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ (𝐹‘𝑏)) | 
| 40 | 31, 39 | ssind 4241 | . . . 4
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏))) | 
| 41 | 40 | ralrimivva 3202 | . . 3
⊢
(∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) → ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏))) | 
| 42 |  | dfss 3970 | . . . . 5
⊢ (𝑐 ⊆ 𝑑 ↔ 𝑐 = (𝑐 ∩ 𝑑)) | 
| 43 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑐 = (𝑐 ∩ 𝑑) → (𝐹‘𝑐) = (𝐹‘(𝑐 ∩ 𝑑))) | 
| 44 | 43 | adantl 481 | . . . . . . 7
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ 𝑐 = (𝑐 ∩ 𝑑)) → (𝐹‘𝑐) = (𝐹‘(𝑐 ∩ 𝑑))) | 
| 45 |  | ineq1 4213 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑐 → (𝑎 ∩ 𝑏) = (𝑐 ∩ 𝑏)) | 
| 46 | 45 | fveq2d 6910 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → (𝐹‘(𝑎 ∩ 𝑏)) = (𝐹‘(𝑐 ∩ 𝑏))) | 
| 47 | 2 | ineq1d 4219 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) = ((𝐹‘𝑐) ∩ (𝐹‘𝑏))) | 
| 48 | 46, 47 | sseq12d 4017 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑐 → ((𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ↔ (𝐹‘(𝑐 ∩ 𝑏)) ⊆ ((𝐹‘𝑐) ∩ (𝐹‘𝑏)))) | 
| 49 |  | ineq2 4214 | . . . . . . . . . . . . 13
⊢ (𝑏 = 𝑑 → (𝑐 ∩ 𝑏) = (𝑐 ∩ 𝑑)) | 
| 50 | 49 | fveq2d 6910 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑑 → (𝐹‘(𝑐 ∩ 𝑏)) = (𝐹‘(𝑐 ∩ 𝑑))) | 
| 51 | 6 | ineq2d 4220 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑑 → ((𝐹‘𝑐) ∩ (𝐹‘𝑏)) = ((𝐹‘𝑐) ∩ (𝐹‘𝑑))) | 
| 52 | 50, 51 | sseq12d 4017 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑑 → ((𝐹‘(𝑐 ∩ 𝑏)) ⊆ ((𝐹‘𝑐) ∩ (𝐹‘𝑏)) ↔ (𝐹‘(𝑐 ∩ 𝑑)) ⊆ ((𝐹‘𝑐) ∩ (𝐹‘𝑑)))) | 
| 53 | 48, 52 | rspc2va 3634 | . . . . . . . . . 10
⊢ (((𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴) ∧ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏))) → (𝐹‘(𝑐 ∩ 𝑑)) ⊆ ((𝐹‘𝑐) ∩ (𝐹‘𝑑))) | 
| 54 | 53 | ancoms 458 | . . . . . . . . 9
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝐹‘(𝑐 ∩ 𝑑)) ⊆ ((𝐹‘𝑐) ∩ (𝐹‘𝑑))) | 
| 55 |  | inss2 4238 | . . . . . . . . 9
⊢ ((𝐹‘𝑐) ∩ (𝐹‘𝑑)) ⊆ (𝐹‘𝑑) | 
| 56 | 54, 55 | sstrdi 3996 | . . . . . . . 8
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝐹‘(𝑐 ∩ 𝑑)) ⊆ (𝐹‘𝑑)) | 
| 57 | 56 | adantr 480 | . . . . . . 7
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ 𝑐 = (𝑐 ∩ 𝑑)) → (𝐹‘(𝑐 ∩ 𝑑)) ⊆ (𝐹‘𝑑)) | 
| 58 | 44, 57 | eqsstrd 4018 | . . . . . 6
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ 𝑐 = (𝑐 ∩ 𝑑)) → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) | 
| 59 | 58 | ex 412 | . . . . 5
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝑐 = (𝑐 ∩ 𝑑) → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 60 | 42, 59 | biimtrid 242 | . . . 4
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 61 | 60 | ralrimivva 3202 | . . 3
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏)) → ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 62 | 41, 61 | impbii 209 | . 2
⊢
(∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ↔ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏))) | 
| 63 | 9, 62 | bitri 275 | 1
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎 ∩ 𝑏)) ⊆ ((𝐹‘𝑎) ∩ (𝐹‘𝑏))) |