MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvcop Structured version   Visualization version   GIF version

Theorem nvvcop 30523
Description: A normed complex vector space is a vector space. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
nvvcop (⟨𝑊, 𝑁⟩ ∈ NrmCVec → 𝑊 ∈ CVecOLD)

Proof of Theorem nvvcop
StepHypRef Expression
1 nvss 30522 . . 3 NrmCVec ⊆ (CVecOLD × V)
21sseli 3942 . 2 (⟨𝑊, 𝑁⟩ ∈ NrmCVec → ⟨𝑊, 𝑁⟩ ∈ (CVecOLD × V))
3 opelxp1 5680 . 2 (⟨𝑊, 𝑁⟩ ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD)
42, 3syl 17 1 (⟨𝑊, 𝑁⟩ ∈ NrmCVec → 𝑊 ∈ CVecOLD)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3447  cop 4595   × cxp 5636  CVecOLDcvc 30487  NrmCVeccnv 30513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-xp 5644  df-oprab 7391  df-nv 30521
This theorem is referenced by:  nvex  30540
  Copyright terms: Public domain W3C validator