| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvvcop | Structured version Visualization version GIF version | ||
| Description: A normed complex vector space is a vector space. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvvcop | ⊢ (〈𝑊, 𝑁〉 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvss 30565 | . . 3 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
| 2 | 1 | sseli 3925 | . 2 ⊢ (〈𝑊, 𝑁〉 ∈ NrmCVec → 〈𝑊, 𝑁〉 ∈ (CVecOLD × V)) |
| 3 | opelxp1 5653 | . 2 ⊢ (〈𝑊, 𝑁〉 ∈ (CVecOLD × V) → 𝑊 ∈ CVecOLD) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (〈𝑊, 𝑁〉 ∈ NrmCVec → 𝑊 ∈ CVecOLD) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 〈cop 4577 × cxp 5609 CVecOLDcvc 30530 NrmCVeccnv 30556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5149 df-xp 5617 df-oprab 7345 df-nv 30564 |
| This theorem is referenced by: nvex 30583 |
| Copyright terms: Public domain | W3C validator |