Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvex | Structured version Visualization version GIF version |
Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvex | ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvvcop 28857 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 〈𝐺, 𝑆〉 ∈ CVecOLD) | |
2 | vcex 28841 | . . 3 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
4 | nvss 28856 | . . . 4 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
5 | 4 | sseli 3913 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 〈〈𝐺, 𝑆〉, 𝑁〉 ∈ (CVecOLD × V)) |
6 | opelxp2 5622 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ (CVecOLD × V) → 𝑁 ∈ V) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 𝑁 ∈ V) |
8 | df-3an 1087 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V)) | |
9 | 3, 7, 8 | sylanbrc 582 | 1 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 Vcvv 3422 〈cop 4564 × cxp 5578 CVecOLDcvc 28821 NrmCVeccnv 28847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-oprab 7259 df-vc 28822 df-nv 28855 |
This theorem is referenced by: isnv 28875 h2hva 29237 h2hsm 29238 h2hnm 29239 |
Copyright terms: Public domain | W3C validator |