MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvex Structured version   Visualization version   GIF version

Theorem nvex 30540
Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
nvex (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))

Proof of Theorem nvex
StepHypRef Expression
1 nvvcop 30523 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → ⟨𝐺, 𝑆⟩ ∈ CVecOLD)
2 vcex 30507 . . 3 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V))
31, 2syl 17 . 2 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V))
4 nvss 30522 . . . 4 NrmCVec ⊆ (CVecOLD × V)
54sseli 3942 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ (CVecOLD × V))
6 opelxp2 5681 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ (CVecOLD × V) → 𝑁 ∈ V)
75, 6syl 17 . 2 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → 𝑁 ∈ V)
8 df-3an 1088 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V))
93, 7, 8sylanbrc 583 1 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  Vcvv 3447  cop 4595   × cxp 5636  CVecOLDcvc 30487  NrmCVeccnv 30513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-oprab 7391  df-vc 30488  df-nv 30521
This theorem is referenced by:  isnv  30541  h2hva  30903  h2hsm  30904  h2hnm  30905
  Copyright terms: Public domain W3C validator