|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nvex | Structured version Visualization version GIF version | ||
| Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nvex | ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nvvcop 30614 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 〈𝐺, 𝑆〉 ∈ CVecOLD) | |
| 2 | vcex 30598 | . . 3 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | 
| 4 | nvss 30613 | . . . 4 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
| 5 | 4 | sseli 3978 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 〈〈𝐺, 𝑆〉, 𝑁〉 ∈ (CVecOLD × V)) | 
| 6 | opelxp2 5727 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ (CVecOLD × V) → 𝑁 ∈ V) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 𝑁 ∈ V) | 
| 8 | df-3an 1088 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V)) | |
| 9 | 3, 7, 8 | sylanbrc 583 | 1 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 Vcvv 3479 〈cop 4631 × cxp 5682 CVecOLDcvc 30578 NrmCVeccnv 30604 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-oprab 7436 df-vc 30579 df-nv 30612 | 
| This theorem is referenced by: isnv 30632 h2hva 30994 h2hsm 30995 h2hnm 30996 | 
| Copyright terms: Public domain | W3C validator |