![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvex | Structured version Visualization version GIF version |
Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvex | ⊢ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvvcop 30112 | . . 3 ⊢ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → ⟨𝐺, 𝑆⟩ ∈ CVecOLD) | |
2 | vcex 30096 | . . 3 ⊢ (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
4 | nvss 30111 | . . . 4 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
5 | 4 | sseli 3979 | . . 3 ⊢ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ (CVecOLD × V)) |
6 | opelxp2 5720 | . . 3 ⊢ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ (CVecOLD × V) → 𝑁 ∈ V) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → 𝑁 ∈ V) |
8 | df-3an 1087 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V)) | |
9 | 3, 7, 8 | sylanbrc 581 | 1 ⊢ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 Vcvv 3472 ⟨cop 4635 × cxp 5675 CVecOLDcvc 30076 NrmCVeccnv 30102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-11 2152 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-oprab 7417 df-vc 30077 df-nv 30110 |
This theorem is referenced by: isnv 30130 h2hva 30492 h2hsm 30493 h2hnm 30494 |
Copyright terms: Public domain | W3C validator |