MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvex Structured version   Visualization version   GIF version

Theorem nvex 28973
Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
nvex (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))

Proof of Theorem nvex
StepHypRef Expression
1 nvvcop 28956 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → ⟨𝐺, 𝑆⟩ ∈ CVecOLD)
2 vcex 28940 . . 3 (⟨𝐺, 𝑆⟩ ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V))
31, 2syl 17 . 2 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V))
4 nvss 28955 . . . 4 NrmCVec ⊆ (CVecOLD × V)
54sseli 3917 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ (CVecOLD × V))
6 opelxp2 5631 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ (CVecOLD × V) → 𝑁 ∈ V)
75, 6syl 17 . 2 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → 𝑁 ∈ V)
8 df-3an 1088 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V))
93, 7, 8sylanbrc 583 1 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  Vcvv 3432  cop 4567   × cxp 5587  CVecOLDcvc 28920  NrmCVeccnv 28946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-oprab 7279  df-vc 28921  df-nv 28954
This theorem is referenced by:  isnv  28974  h2hva  29336  h2hsm  29337  h2hnm  29338
  Copyright terms: Public domain W3C validator