| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvex | Structured version Visualization version GIF version | ||
| Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvex | ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvvcop 30523 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 〈𝐺, 𝑆〉 ∈ CVecOLD) | |
| 2 | vcex 30507 | . . 3 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
| 4 | nvss 30522 | . . . 4 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
| 5 | 4 | sseli 3942 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 〈〈𝐺, 𝑆〉, 𝑁〉 ∈ (CVecOLD × V)) |
| 6 | opelxp2 5681 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ (CVecOLD × V) → 𝑁 ∈ V) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 𝑁 ∈ V) |
| 8 | df-3an 1088 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V)) | |
| 9 | 3, 7, 8 | sylanbrc 583 | 1 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3447 〈cop 4595 × cxp 5636 CVecOLDcvc 30487 NrmCVeccnv 30513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-oprab 7391 df-vc 30488 df-nv 30521 |
| This theorem is referenced by: isnv 30541 h2hva 30903 h2hsm 30904 h2hnm 30905 |
| Copyright terms: Public domain | W3C validator |