![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvex | Structured version Visualization version GIF version |
Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvex | ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvvcop 30626 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 〈𝐺, 𝑆〉 ∈ CVecOLD) | |
2 | vcex 30610 | . . 3 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
4 | nvss 30625 | . . . 4 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
5 | 4 | sseli 4004 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 〈〈𝐺, 𝑆〉, 𝑁〉 ∈ (CVecOLD × V)) |
6 | opelxp2 5743 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ (CVecOLD × V) → 𝑁 ∈ V) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → 𝑁 ∈ V) |
8 | df-3an 1089 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ V) ∧ 𝑁 ∈ V)) | |
9 | 3, 7, 8 | sylanbrc 582 | 1 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec → (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 Vcvv 3488 〈cop 4654 × cxp 5698 CVecOLDcvc 30590 NrmCVeccnv 30616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-oprab 7452 df-vc 30591 df-nv 30624 |
This theorem is referenced by: isnv 30644 h2hva 31006 h2hsm 31007 h2hnm 31008 |
Copyright terms: Public domain | W3C validator |