MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvss Structured version   Visualization version   GIF version

Theorem nvss 30573
Description: Structure of the class of all normed complex vectors spaces. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
nvss NrmCVec ⊆ (CVecOLD × V)

Proof of Theorem nvss
Dummy variables 𝑔 𝑠 𝑛 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2819 . . . . . . 7 (𝑤 = ⟨𝑔, 𝑠⟩ → (𝑤 ∈ CVecOLD ↔ ⟨𝑔, 𝑠⟩ ∈ CVecOLD))
21biimpar 477 . . . . . 6 ((𝑤 = ⟨𝑔, 𝑠⟩ ∧ ⟨𝑔, 𝑠⟩ ∈ CVecOLD) → 𝑤 ∈ CVecOLD)
323ad2antr1 1189 . . . . 5 ((𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → 𝑤 ∈ CVecOLD)
43exlimivv 1933 . . . 4 (∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → 𝑤 ∈ CVecOLD)
5 vex 3440 . . . 4 𝑛 ∈ V
64, 5jctir 520 . . 3 (∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → (𝑤 ∈ CVecOLD𝑛 ∈ V))
76ssopab2i 5488 . 2 {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))} ⊆ {⟨𝑤, 𝑛⟩ ∣ (𝑤 ∈ CVecOLD𝑛 ∈ V)}
8 df-nv 30572 . . 3 NrmCVec = {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))}
9 dfoprab2 7404 . . 3 {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))} = {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))}
108, 9eqtri 2754 . 2 NrmCVec = {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))}
11 df-xp 5620 . 2 (CVecOLD × V) = {⟨𝑤, 𝑛⟩ ∣ (𝑤 ∈ CVecOLD𝑛 ∈ V)}
127, 10, 113sstr4i 3981 1 NrmCVec ⊆ (CVecOLD × V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  wss 3897  cop 4579   class class class wbr 5089  {copab 5151   × cxp 5612  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  {coprab 7347  cc 11004  cr 11005  0cc0 11006   + caddc 11009   · cmul 11011  cle 11147  abscabs 15141  GIdcgi 30470  CVecOLDcvc 30538  NrmCVeccnv 30564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-opab 5152  df-xp 5620  df-oprab 7350  df-nv 30572
This theorem is referenced by:  nvvcop  30574  nvrel  30582  nvvop  30589  nvex  30591
  Copyright terms: Public domain W3C validator