MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvss Structured version   Visualization version   GIF version

Theorem nvss 28955
Description: Structure of the class of all normed complex vectors spaces. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
nvss NrmCVec ⊆ (CVecOLD × V)

Proof of Theorem nvss
Dummy variables 𝑔 𝑠 𝑛 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . . . . . 7 (𝑤 = ⟨𝑔, 𝑠⟩ → (𝑤 ∈ CVecOLD ↔ ⟨𝑔, 𝑠⟩ ∈ CVecOLD))
21biimpar 478 . . . . . 6 ((𝑤 = ⟨𝑔, 𝑠⟩ ∧ ⟨𝑔, 𝑠⟩ ∈ CVecOLD) → 𝑤 ∈ CVecOLD)
323ad2antr1 1187 . . . . 5 ((𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → 𝑤 ∈ CVecOLD)
43exlimivv 1935 . . . 4 (∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → 𝑤 ∈ CVecOLD)
5 vex 3436 . . . 4 𝑛 ∈ V
64, 5jctir 521 . . 3 (∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → (𝑤 ∈ CVecOLD𝑛 ∈ V))
76ssopab2i 5463 . 2 {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))} ⊆ {⟨𝑤, 𝑛⟩ ∣ (𝑤 ∈ CVecOLD𝑛 ∈ V)}
8 df-nv 28954 . . 3 NrmCVec = {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))}
9 dfoprab2 7333 . . 3 {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))} = {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))}
108, 9eqtri 2766 . 2 NrmCVec = {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))}
11 df-xp 5595 . 2 (CVecOLD × V) = {⟨𝑤, 𝑛⟩ ∣ (𝑤 ∈ CVecOLD𝑛 ∈ V)}
127, 10, 113sstr4i 3964 1 NrmCVec ⊆ (CVecOLD × V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wral 3064  Vcvv 3432  wss 3887  cop 4567   class class class wbr 5074  {copab 5136   × cxp 5587  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  {coprab 7276  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  cle 11010  abscabs 14945  GIdcgi 28852  CVecOLDcvc 28920  NrmCVeccnv 28946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-xp 5595  df-oprab 7279  df-nv 28954
This theorem is referenced by:  nvvcop  28956  nvrel  28964  nvvop  28971  nvex  28973
  Copyright terms: Public domain W3C validator