Step | Hyp | Ref
| Expression |
1 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑤 = 〈𝑔, 𝑠〉 → (𝑤 ∈ CVecOLD ↔ 〈𝑔, 𝑠〉 ∈
CVecOLD)) |
2 | 1 | biimpar 478 |
. . . . . 6
⊢ ((𝑤 = 〈𝑔, 𝑠〉 ∧ 〈𝑔, 𝑠〉 ∈ CVecOLD) →
𝑤 ∈
CVecOLD) |
3 | 2 | 3ad2antr1 1187 |
. . . . 5
⊢ ((𝑤 = 〈𝑔, 𝑠〉 ∧ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))) → 𝑤 ∈ CVecOLD) |
4 | 3 | exlimivv 1935 |
. . . 4
⊢
(∃𝑔∃𝑠(𝑤 = 〈𝑔, 𝑠〉 ∧ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))) → 𝑤 ∈ CVecOLD) |
5 | | vex 3436 |
. . . 4
⊢ 𝑛 ∈ V |
6 | 4, 5 | jctir 521 |
. . 3
⊢
(∃𝑔∃𝑠(𝑤 = 〈𝑔, 𝑠〉 ∧ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))) → (𝑤 ∈ CVecOLD ∧ 𝑛 ∈ V)) |
7 | 6 | ssopab2i 5463 |
. 2
⊢
{〈𝑤, 𝑛〉 ∣ ∃𝑔∃𝑠(𝑤 = 〈𝑔, 𝑠〉 ∧ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)))))} ⊆ {〈𝑤, 𝑛〉 ∣ (𝑤 ∈ CVecOLD ∧ 𝑛 ∈ V)} |
8 | | df-nv 28954 |
. . 3
⊢ NrmCVec =
{〈〈𝑔, 𝑠〉, 𝑛〉 ∣ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))} |
9 | | dfoprab2 7333 |
. . 3
⊢
{〈〈𝑔,
𝑠〉, 𝑛〉 ∣ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))} = {〈𝑤, 𝑛〉 ∣ ∃𝑔∃𝑠(𝑤 = 〈𝑔, 𝑠〉 ∧ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)))))} |
10 | 8, 9 | eqtri 2766 |
. 2
⊢ NrmCVec =
{〈𝑤, 𝑛〉 ∣ ∃𝑔∃𝑠(𝑤 = 〈𝑔, 𝑠〉 ∧ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦)))))} |
11 | | df-xp 5595 |
. 2
⊢
(CVecOLD × V) = {〈𝑤, 𝑛〉 ∣ (𝑤 ∈ CVecOLD ∧ 𝑛 ∈ V)} |
12 | 7, 10, 11 | 3sstr4i 3964 |
1
⊢ NrmCVec
⊆ (CVecOLD × V) |