MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvss Structured version   Visualization version   GIF version

Theorem nvss 30572
Description: Structure of the class of all normed complex vectors spaces. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
nvss NrmCVec ⊆ (CVecOLD × V)

Proof of Theorem nvss
Dummy variables 𝑔 𝑠 𝑛 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2816 . . . . . . 7 (𝑤 = ⟨𝑔, 𝑠⟩ → (𝑤 ∈ CVecOLD ↔ ⟨𝑔, 𝑠⟩ ∈ CVecOLD))
21biimpar 477 . . . . . 6 ((𝑤 = ⟨𝑔, 𝑠⟩ ∧ ⟨𝑔, 𝑠⟩ ∈ CVecOLD) → 𝑤 ∈ CVecOLD)
323ad2antr1 1189 . . . . 5 ((𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → 𝑤 ∈ CVecOLD)
43exlimivv 1932 . . . 4 (∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → 𝑤 ∈ CVecOLD)
5 vex 3448 . . . 4 𝑛 ∈ V
64, 5jctir 520 . . 3 (∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))) → (𝑤 ∈ CVecOLD𝑛 ∈ V))
76ssopab2i 5505 . 2 {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))} ⊆ {⟨𝑤, 𝑛⟩ ∣ (𝑤 ∈ CVecOLD𝑛 ∈ V)}
8 df-nv 30571 . . 3 NrmCVec = {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))}
9 dfoprab2 7427 . . 3 {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))} = {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))}
108, 9eqtri 2752 . 2 NrmCVec = {⟨𝑤, 𝑛⟩ ∣ ∃𝑔𝑠(𝑤 = ⟨𝑔, 𝑠⟩ ∧ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦)))))}
11 df-xp 5637 . 2 (CVecOLD × V) = {⟨𝑤, 𝑛⟩ ∣ (𝑤 ∈ CVecOLD𝑛 ∈ V)}
127, 10, 113sstr4i 3995 1 NrmCVec ⊆ (CVecOLD × V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3444  wss 3911  cop 4591   class class class wbr 5102  {copab 5164   × cxp 5629  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  {coprab 7370  cc 11042  cr 11043  0cc0 11044   + caddc 11047   · cmul 11049  cle 11185  abscabs 15176  GIdcgi 30469  CVecOLDcvc 30537  NrmCVeccnv 30563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165  df-xp 5637  df-oprab 7373  df-nv 30571
This theorem is referenced by:  nvvcop  30573  nvrel  30581  nvvop  30588  nvex  30590
  Copyright terms: Public domain W3C validator