Step | Hyp | Ref
| Expression |
1 | | eleq1 2819 |
. . . . . . 7
β’ (π€ = β¨π, π β© β (π€ β CVecOLD β β¨π, π β© β
CVecOLD)) |
2 | 1 | biimpar 476 |
. . . . . 6
β’ ((π€ = β¨π, π β© β§ β¨π, π β© β CVecOLD) β
π€ β
CVecOLD) |
3 | 2 | 3ad2antr1 1186 |
. . . . 5
β’ ((π€ = β¨π, π β© β§ (β¨π, π β© β CVecOLD β§ π:ran πβΆβ β§ βπ₯ β ran π(((πβπ₯) = 0 β π₯ = (GIdβπ)) β§ βπ¦ β β (πβ(π¦π π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β ran π(πβ(π₯ππ¦)) β€ ((πβπ₯) + (πβπ¦))))) β π€ β CVecOLD) |
4 | 3 | exlimivv 1933 |
. . . 4
β’
(βπβπ (π€ = β¨π, π β© β§ (β¨π, π β© β CVecOLD β§ π:ran πβΆβ β§ βπ₯ β ran π(((πβπ₯) = 0 β π₯ = (GIdβπ)) β§ βπ¦ β β (πβ(π¦π π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β ran π(πβ(π₯ππ¦)) β€ ((πβπ₯) + (πβπ¦))))) β π€ β CVecOLD) |
5 | | vex 3476 |
. . . 4
β’ π β V |
6 | 4, 5 | jctir 519 |
. . 3
β’
(βπβπ (π€ = β¨π, π β© β§ (β¨π, π β© β CVecOLD β§ π:ran πβΆβ β§ βπ₯ β ran π(((πβπ₯) = 0 β π₯ = (GIdβπ)) β§ βπ¦ β β (πβ(π¦π π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β ran π(πβ(π₯ππ¦)) β€ ((πβπ₯) + (πβπ¦))))) β (π€ β CVecOLD β§ π β V)) |
7 | 6 | ssopab2i 5549 |
. 2
β’
{β¨π€, πβ© β£ βπβπ (π€ = β¨π, π β© β§ (β¨π, π β© β CVecOLD β§ π:ran πβΆβ β§ βπ₯ β ran π(((πβπ₯) = 0 β π₯ = (GIdβπ)) β§ βπ¦ β β (πβ(π¦π π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β ran π(πβ(π₯ππ¦)) β€ ((πβπ₯) + (πβπ¦)))))} β {β¨π€, πβ© β£ (π€ β CVecOLD β§ π β V)} |
8 | | df-nv 30112 |
. . 3
β’ NrmCVec =
{β¨β¨π, π β©, πβ© β£ (β¨π, π β© β CVecOLD β§ π:ran πβΆβ β§ βπ₯ β ran π(((πβπ₯) = 0 β π₯ = (GIdβπ)) β§ βπ¦ β β (πβ(π¦π π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β ran π(πβ(π₯ππ¦)) β€ ((πβπ₯) + (πβπ¦))))} |
9 | | dfoprab2 7469 |
. . 3
β’
{β¨β¨π,
π β©, πβ© β£ (β¨π, π β© β CVecOLD β§ π:ran πβΆβ β§ βπ₯ β ran π(((πβπ₯) = 0 β π₯ = (GIdβπ)) β§ βπ¦ β β (πβ(π¦π π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β ran π(πβ(π₯ππ¦)) β€ ((πβπ₯) + (πβπ¦))))} = {β¨π€, πβ© β£ βπβπ (π€ = β¨π, π β© β§ (β¨π, π β© β CVecOLD β§ π:ran πβΆβ β§ βπ₯ β ran π(((πβπ₯) = 0 β π₯ = (GIdβπ)) β§ βπ¦ β β (πβ(π¦π π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β ran π(πβ(π₯ππ¦)) β€ ((πβπ₯) + (πβπ¦)))))} |
10 | 8, 9 | eqtri 2758 |
. 2
β’ NrmCVec =
{β¨π€, πβ© β£ βπβπ (π€ = β¨π, π β© β§ (β¨π, π β© β CVecOLD β§ π:ran πβΆβ β§ βπ₯ β ran π(((πβπ₯) = 0 β π₯ = (GIdβπ)) β§ βπ¦ β β (πβ(π¦π π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β ran π(πβ(π₯ππ¦)) β€ ((πβπ₯) + (πβπ¦)))))} |
11 | | df-xp 5681 |
. 2
β’
(CVecOLD Γ V) = {β¨π€, πβ© β£ (π€ β CVecOLD β§ π β V)} |
12 | 7, 10, 11 | 3sstr4i 4024 |
1
β’ NrmCVec
β (CVecOLD Γ V) |