MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvss Structured version   Visualization version   GIF version

Theorem nvss 30113
Description: Structure of the class of all normed complex vectors spaces. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
nvss NrmCVec βŠ† (CVecOLD Γ— V)

Proof of Theorem nvss
Dummy variables 𝑔 𝑠 𝑛 𝑀 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2819 . . . . . . 7 (𝑀 = βŸ¨π‘”, π‘ βŸ© β†’ (𝑀 ∈ CVecOLD ↔ βŸ¨π‘”, π‘ βŸ© ∈ CVecOLD))
21biimpar 476 . . . . . 6 ((𝑀 = βŸ¨π‘”, π‘ βŸ© ∧ βŸ¨π‘”, π‘ βŸ© ∈ CVecOLD) β†’ 𝑀 ∈ CVecOLD)
323ad2antr1 1186 . . . . 5 ((𝑀 = βŸ¨π‘”, π‘ βŸ© ∧ (βŸ¨π‘”, π‘ βŸ© ∈ CVecOLD ∧ 𝑛:ran π‘”βŸΆβ„ ∧ βˆ€π‘₯ ∈ ran 𝑔(((π‘›β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜π‘”)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘›β€˜(𝑦𝑠π‘₯)) = ((absβ€˜π‘¦) Β· (π‘›β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ ran 𝑔(π‘›β€˜(π‘₯𝑔𝑦)) ≀ ((π‘›β€˜π‘₯) + (π‘›β€˜π‘¦))))) β†’ 𝑀 ∈ CVecOLD)
43exlimivv 1933 . . . 4 (βˆƒπ‘”βˆƒπ‘ (𝑀 = βŸ¨π‘”, π‘ βŸ© ∧ (βŸ¨π‘”, π‘ βŸ© ∈ CVecOLD ∧ 𝑛:ran π‘”βŸΆβ„ ∧ βˆ€π‘₯ ∈ ran 𝑔(((π‘›β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜π‘”)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘›β€˜(𝑦𝑠π‘₯)) = ((absβ€˜π‘¦) Β· (π‘›β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ ran 𝑔(π‘›β€˜(π‘₯𝑔𝑦)) ≀ ((π‘›β€˜π‘₯) + (π‘›β€˜π‘¦))))) β†’ 𝑀 ∈ CVecOLD)
5 vex 3476 . . . 4 𝑛 ∈ V
64, 5jctir 519 . . 3 (βˆƒπ‘”βˆƒπ‘ (𝑀 = βŸ¨π‘”, π‘ βŸ© ∧ (βŸ¨π‘”, π‘ βŸ© ∈ CVecOLD ∧ 𝑛:ran π‘”βŸΆβ„ ∧ βˆ€π‘₯ ∈ ran 𝑔(((π‘›β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜π‘”)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘›β€˜(𝑦𝑠π‘₯)) = ((absβ€˜π‘¦) Β· (π‘›β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ ran 𝑔(π‘›β€˜(π‘₯𝑔𝑦)) ≀ ((π‘›β€˜π‘₯) + (π‘›β€˜π‘¦))))) β†’ (𝑀 ∈ CVecOLD ∧ 𝑛 ∈ V))
76ssopab2i 5549 . 2 {βŸ¨π‘€, π‘›βŸ© ∣ βˆƒπ‘”βˆƒπ‘ (𝑀 = βŸ¨π‘”, π‘ βŸ© ∧ (βŸ¨π‘”, π‘ βŸ© ∈ CVecOLD ∧ 𝑛:ran π‘”βŸΆβ„ ∧ βˆ€π‘₯ ∈ ran 𝑔(((π‘›β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜π‘”)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘›β€˜(𝑦𝑠π‘₯)) = ((absβ€˜π‘¦) Β· (π‘›β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ ran 𝑔(π‘›β€˜(π‘₯𝑔𝑦)) ≀ ((π‘›β€˜π‘₯) + (π‘›β€˜π‘¦)))))} βŠ† {βŸ¨π‘€, π‘›βŸ© ∣ (𝑀 ∈ CVecOLD ∧ 𝑛 ∈ V)}
8 df-nv 30112 . . 3 NrmCVec = {βŸ¨βŸ¨π‘”, π‘ βŸ©, π‘›βŸ© ∣ (βŸ¨π‘”, π‘ βŸ© ∈ CVecOLD ∧ 𝑛:ran π‘”βŸΆβ„ ∧ βˆ€π‘₯ ∈ ran 𝑔(((π‘›β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜π‘”)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘›β€˜(𝑦𝑠π‘₯)) = ((absβ€˜π‘¦) Β· (π‘›β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ ran 𝑔(π‘›β€˜(π‘₯𝑔𝑦)) ≀ ((π‘›β€˜π‘₯) + (π‘›β€˜π‘¦))))}
9 dfoprab2 7469 . . 3 {βŸ¨βŸ¨π‘”, π‘ βŸ©, π‘›βŸ© ∣ (βŸ¨π‘”, π‘ βŸ© ∈ CVecOLD ∧ 𝑛:ran π‘”βŸΆβ„ ∧ βˆ€π‘₯ ∈ ran 𝑔(((π‘›β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜π‘”)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘›β€˜(𝑦𝑠π‘₯)) = ((absβ€˜π‘¦) Β· (π‘›β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ ran 𝑔(π‘›β€˜(π‘₯𝑔𝑦)) ≀ ((π‘›β€˜π‘₯) + (π‘›β€˜π‘¦))))} = {βŸ¨π‘€, π‘›βŸ© ∣ βˆƒπ‘”βˆƒπ‘ (𝑀 = βŸ¨π‘”, π‘ βŸ© ∧ (βŸ¨π‘”, π‘ βŸ© ∈ CVecOLD ∧ 𝑛:ran π‘”βŸΆβ„ ∧ βˆ€π‘₯ ∈ ran 𝑔(((π‘›β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜π‘”)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘›β€˜(𝑦𝑠π‘₯)) = ((absβ€˜π‘¦) Β· (π‘›β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ ran 𝑔(π‘›β€˜(π‘₯𝑔𝑦)) ≀ ((π‘›β€˜π‘₯) + (π‘›β€˜π‘¦)))))}
108, 9eqtri 2758 . 2 NrmCVec = {βŸ¨π‘€, π‘›βŸ© ∣ βˆƒπ‘”βˆƒπ‘ (𝑀 = βŸ¨π‘”, π‘ βŸ© ∧ (βŸ¨π‘”, π‘ βŸ© ∈ CVecOLD ∧ 𝑛:ran π‘”βŸΆβ„ ∧ βˆ€π‘₯ ∈ ran 𝑔(((π‘›β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜π‘”)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘›β€˜(𝑦𝑠π‘₯)) = ((absβ€˜π‘¦) Β· (π‘›β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ ran 𝑔(π‘›β€˜(π‘₯𝑔𝑦)) ≀ ((π‘›β€˜π‘₯) + (π‘›β€˜π‘¦)))))}
11 df-xp 5681 . 2 (CVecOLD Γ— V) = {βŸ¨π‘€, π‘›βŸ© ∣ (𝑀 ∈ CVecOLD ∧ 𝑛 ∈ V)}
127, 10, 113sstr4i 4024 1 NrmCVec βŠ† (CVecOLD Γ— V)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539  βˆƒwex 1779   ∈ wcel 2104  βˆ€wral 3059  Vcvv 3472   βŠ† wss 3947  βŸ¨cop 4633   class class class wbr 5147  {copab 5209   Γ— cxp 5673  ran crn 5676  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  {coprab 7412  β„‚cc 11110  β„cr 11111  0cc0 11112   + caddc 11115   Β· cmul 11117   ≀ cle 11253  abscabs 15185  GIdcgi 30010  CVecOLDcvc 30078  NrmCVeccnv 30104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-11 2152  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-opab 5210  df-xp 5681  df-oprab 7415  df-nv 30112
This theorem is referenced by:  nvvcop  30114  nvrel  30122  nvvop  30129  nvex  30131
  Copyright terms: Public domain W3C validator