MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcnvg Structured version   Visualization version   GIF version

Theorem opelcnvg 5823
Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
opelcnvg ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))

Proof of Theorem opelcnvg
StepHypRef Expression
1 brcnvg 5822 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐵𝑅𝐴))
2 df-br 5093 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
3 df-br 5093 . 2 (𝐵𝑅𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
41, 2, 33bitr3g 313 1 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  cop 4583   class class class wbr 5092  ccnv 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-cnv 5627
This theorem is referenced by:  opelcnv  5824  fvimacnv  6987  brtpos  8168  xrlenlt  11180  brcolinear2  36052
  Copyright terms: Public domain W3C validator