| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvimacnv | Structured version Visualization version GIF version | ||
| Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 6618 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| fvimacnv | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvop 7039 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 2 | fvex 6888 | . . . . . . 7 ⊢ (𝐹‘𝐴) ∈ V | |
| 3 | opelcnvg 5860 | . . . . . . 7 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
| 4 | 2, 3 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) |
| 6 | 1, 5 | mpbird 257 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹) |
| 7 | elimasng 6076 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) | |
| 8 | 2, 7 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) |
| 10 | 6, 9 | mpbird 257 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)})) |
| 11 | 2 | snss 4761 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
| 12 | imass2 6089 | . . . . 5 ⊢ ({(𝐹‘𝐴)} ⊆ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) | |
| 13 | 11, 12 | sylbi 217 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) |
| 14 | 13 | sseld 3957 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| 15 | 10, 14 | syl5com 31 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| 16 | fvimacnvi 7041 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) | |
| 17 | 16 | ex 412 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
| 19 | 15, 18 | impbid 212 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 {csn 4601 〈cop 4607 ◡ccnv 5653 dom cdm 5654 “ cima 5657 Fun wfun 6524 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-fv 6538 |
| This theorem is referenced by: funimass3 7043 elpreima 7047 iinpreima 7058 rhmpreimaidl 21236 isr0 23673 rnelfmlem 23888 rnelfm 23889 fmfnfmlem2 23891 fmfnfmlem4 23893 fmfnfm 23894 metustid 24491 metustsym 24492 metustexhalf 24493 xppreima 32569 dstfrvel 34452 ballotlemrv 34498 bj-fvimacnv0 37250 bj-isrvec 37258 grpokerinj 37863 diaintclN 41023 dibintclN 41132 dihintcl 41309 aks6d1c2lem4 42086 aks6d1c6lem2 42130 rhmqusspan 42144 arearect 43186 areaquad 43187 |
| Copyright terms: Public domain | W3C validator |