![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvimacnv | Structured version Visualization version GIF version |
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 6637 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
fvimacnv | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop 7058 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
2 | fvex 6909 | . . . . . . 7 ⊢ (𝐹‘𝐴) ∈ V | |
3 | opelcnvg 5883 | . . . . . . 7 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
4 | 2, 3 | mpan 688 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) |
5 | 4 | adantl 480 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) |
6 | 1, 5 | mpbird 256 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹) |
7 | elimasng 6093 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) | |
8 | 2, 7 | mpan 688 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) |
9 | 8 | adantl 480 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) |
10 | 6, 9 | mpbird 256 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)})) |
11 | 2 | snss 4791 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
12 | imass2 6107 | . . . . 5 ⊢ ({(𝐹‘𝐴)} ⊆ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) | |
13 | 11, 12 | sylbi 216 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) |
14 | 13 | sseld 3975 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
15 | 10, 14 | syl5com 31 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
16 | fvimacnvi 7060 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) | |
17 | 16 | ex 411 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
18 | 17 | adantr 479 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
19 | 15, 18 | impbid 211 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 Vcvv 3461 ⊆ wss 3944 {csn 4630 〈cop 4636 ◡ccnv 5677 dom cdm 5678 “ cima 5681 Fun wfun 6543 ‘cfv 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-fv 6557 |
This theorem is referenced by: funimass3 7062 elpreima 7066 iinpreima 7077 rhmpreimaidl 21184 isr0 23685 rnelfmlem 23900 rnelfm 23901 fmfnfmlem2 23903 fmfnfmlem4 23905 fmfnfm 23906 metustid 24507 metustsym 24508 metustexhalf 24509 xppreima 32513 dstfrvel 34221 ballotlemrv 34267 bj-fvimacnv0 36893 bj-isrvec 36901 grpokerinj 37494 diaintclN 40658 dibintclN 40767 dihintcl 40944 aks6d1c2lem4 41727 aks6d1c6lem2 41771 rhmqusspan 41785 arearect 42782 areaquad 42783 |
Copyright terms: Public domain | W3C validator |