Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvimacnv | Structured version Visualization version GIF version |
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 6517 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
fvimacnv | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop 6927 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
2 | fvex 6787 | . . . . . . 7 ⊢ (𝐹‘𝐴) ∈ V | |
3 | opelcnvg 5789 | . . . . . . 7 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
4 | 2, 3 | mpan 687 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) |
5 | 4 | adantl 482 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) |
6 | 1, 5 | mpbird 256 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹) |
7 | elimasng 5996 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) | |
8 | 2, 7 | mpan 687 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) |
9 | 8 | adantl 482 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) |
10 | 6, 9 | mpbird 256 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)})) |
11 | 2 | snss 4719 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
12 | imass2 6010 | . . . . 5 ⊢ ({(𝐹‘𝐴)} ⊆ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) | |
13 | 11, 12 | sylbi 216 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) |
14 | 13 | sseld 3920 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
15 | 10, 14 | syl5com 31 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
16 | fvimacnvi 6929 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) | |
17 | 16 | ex 413 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
18 | 17 | adantr 481 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
19 | 15, 18 | impbid 211 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 {csn 4561 〈cop 4567 ◡ccnv 5588 dom cdm 5589 “ cima 5592 Fun wfun 6427 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: funimass3 6931 elpreima 6935 iinpreima 6946 isr0 22888 rnelfmlem 23103 rnelfm 23104 fmfnfmlem2 23106 fmfnfmlem4 23108 fmfnfm 23109 metustid 23710 metustsym 23711 metustexhalf 23712 xppreima 30983 rhmpreimaidl 31603 dstfrvel 32440 ballotlemrv 32486 bj-fvimacnv0 35457 bj-isrvec 35465 grpokerinj 36051 diaintclN 39072 dibintclN 39181 dihintcl 39358 arearect 41046 areaquad 41047 |
Copyright terms: Public domain | W3C validator |