MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnv Structured version   Visualization version   GIF version

Theorem fvimacnv 7072
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 6650 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
fvimacnv ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))

Proof of Theorem fvimacnv
StepHypRef Expression
1 funfvop 7069 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 fvex 6919 . . . . . . 7 (𝐹𝐴) ∈ V
3 opelcnvg 5893 . . . . . . 7 (((𝐹𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
42, 3mpan 690 . . . . . 6 (𝐴 ∈ dom 𝐹 → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
54adantl 481 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
61, 5mpbird 257 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹)
7 elimasng 6108 . . . . . 6 (((𝐹𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
82, 7mpan 690 . . . . 5 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
98adantl 481 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
106, 9mpbird 257 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐹 “ {(𝐹𝐴)}))
112snss 4789 . . . . 5 ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵)
12 imass2 6122 . . . . 5 ({(𝐹𝐴)} ⊆ 𝐵 → (𝐹 “ {(𝐹𝐴)}) ⊆ (𝐹𝐵))
1311, 12sylbi 217 . . . 4 ((𝐹𝐴) ∈ 𝐵 → (𝐹 “ {(𝐹𝐴)}) ⊆ (𝐹𝐵))
1413sseld 3993 . . 3 ((𝐹𝐴) ∈ 𝐵 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) → 𝐴 ∈ (𝐹𝐵)))
1510, 14syl5com 31 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
16 fvimacnvi 7071 . . . 4 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
1716ex 412 . . 3 (Fun 𝐹 → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1817adantr 480 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1915, 18impbid 212 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2105  Vcvv 3477  wss 3962  {csn 4630  cop 4636  ccnv 5687  dom cdm 5688  cima 5691  Fun wfun 6556  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-fv 6570
This theorem is referenced by:  funimass3  7073  elpreima  7077  iinpreima  7088  rhmpreimaidl  21304  isr0  23760  rnelfmlem  23975  rnelfm  23976  fmfnfmlem2  23978  fmfnfmlem4  23980  fmfnfm  23981  metustid  24582  metustsym  24583  metustexhalf  24584  xppreima  32661  dstfrvel  34454  ballotlemrv  34500  bj-fvimacnv0  37268  bj-isrvec  37276  grpokerinj  37879  diaintclN  41040  dibintclN  41149  dihintcl  41326  aks6d1c2lem4  42108  aks6d1c6lem2  42152  rhmqusspan  42166  arearect  43203  areaquad  43204
  Copyright terms: Public domain W3C validator