| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvimacnv | Structured version Visualization version GIF version | ||
| Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 6569 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| fvimacnv | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvop 6989 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 2 | fvex 6841 | . . . . . . 7 ⊢ (𝐹‘𝐴) ∈ V | |
| 3 | opelcnvg 5824 | . . . . . . 7 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
| 4 | 2, 3 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) |
| 6 | 1, 5 | mpbird 257 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹) |
| 7 | elimasng 6042 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) | |
| 8 | 2, 7 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ 〈(𝐹‘𝐴), 𝐴〉 ∈ ◡𝐹)) |
| 10 | 6, 9 | mpbird 257 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)})) |
| 11 | 2 | snss 4736 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
| 12 | imass2 6055 | . . . . 5 ⊢ ({(𝐹‘𝐴)} ⊆ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) | |
| 13 | 11, 12 | sylbi 217 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) |
| 14 | 13 | sseld 3929 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| 15 | 10, 14 | syl5com 31 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| 16 | fvimacnvi 6991 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) | |
| 17 | 16 | ex 412 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
| 19 | 15, 18 | impbid 212 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 {csn 4575 〈cop 4581 ◡ccnv 5618 dom cdm 5619 “ cima 5622 Fun wfun 6480 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: funimass3 6993 elpreima 6997 iinpreima 7008 rhmpreimaidl 21216 isr0 23653 rnelfmlem 23868 rnelfm 23869 fmfnfmlem2 23871 fmfnfmlem4 23873 fmfnfm 23874 metustid 24470 metustsym 24471 metustexhalf 24472 xppreima 32629 dstfrvel 34508 ballotlemrv 34554 bj-fvimacnv0 37351 bj-isrvec 37359 grpokerinj 37954 diaintclN 41178 dibintclN 41287 dihintcl 41464 aks6d1c2lem4 42241 aks6d1c6lem2 42285 rhmqusspan 42299 arearect 43333 areaquad 43334 tannpoly 47015 sinnpoly 47016 |
| Copyright terms: Public domain | W3C validator |