![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvimacnv | Structured version Visualization version GIF version |
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 6625 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
fvimacnv | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop 7045 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹) | |
2 | fvex 6898 | . . . . . . 7 ⊢ (𝐹‘𝐴) ∈ V | |
3 | opelcnvg 5874 | . . . . . . 7 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹 ↔ ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹)) | |
4 | 2, 3 | mpan 687 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → (⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹 ↔ ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹)) |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹 ↔ ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹)) |
6 | 1, 5 | mpbird 257 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹) |
7 | elimasng 6081 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ ⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹)) | |
8 | 2, 7 | mpan 687 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ ⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹)) |
9 | 8 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ ⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹)) |
10 | 6, 9 | mpbird 257 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)})) |
11 | 2 | snss 4784 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
12 | imass2 6095 | . . . . 5 ⊢ ({(𝐹‘𝐴)} ⊆ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) | |
13 | 11, 12 | sylbi 216 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) |
14 | 13 | sseld 3976 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
15 | 10, 14 | syl5com 31 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
16 | fvimacnvi 7047 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) | |
17 | 16 | ex 412 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
18 | 17 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
19 | 15, 18 | impbid 211 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 {csn 4623 ⟨cop 4629 ◡ccnv 5668 dom cdm 5669 “ cima 5672 Fun wfun 6531 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-fv 6545 |
This theorem is referenced by: funimass3 7049 elpreima 7053 iinpreima 7064 isr0 23596 rnelfmlem 23811 rnelfm 23812 fmfnfmlem2 23814 fmfnfmlem4 23816 fmfnfm 23817 metustid 24418 metustsym 24419 metustexhalf 24420 xppreima 32380 rhmpreimaidl 33043 dstfrvel 34002 ballotlemrv 34048 bj-fvimacnv0 36674 bj-isrvec 36682 grpokerinj 37274 diaintclN 40442 dibintclN 40551 dihintcl 40728 aks6d1c2lem4 41503 arearect 42537 areaquad 42538 |
Copyright terms: Public domain | W3C validator |