MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnv Structured version   Visualization version   GIF version

Theorem fvimacnv 6930
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 6517 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
fvimacnv ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))

Proof of Theorem fvimacnv
StepHypRef Expression
1 funfvop 6927 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 fvex 6787 . . . . . . 7 (𝐹𝐴) ∈ V
3 opelcnvg 5789 . . . . . . 7 (((𝐹𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
42, 3mpan 687 . . . . . 6 (𝐴 ∈ dom 𝐹 → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
54adantl 482 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
61, 5mpbird 256 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹)
7 elimasng 5996 . . . . . 6 (((𝐹𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
82, 7mpan 687 . . . . 5 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
98adantl 482 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
106, 9mpbird 256 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐹 “ {(𝐹𝐴)}))
112snss 4719 . . . . 5 ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵)
12 imass2 6010 . . . . 5 ({(𝐹𝐴)} ⊆ 𝐵 → (𝐹 “ {(𝐹𝐴)}) ⊆ (𝐹𝐵))
1311, 12sylbi 216 . . . 4 ((𝐹𝐴) ∈ 𝐵 → (𝐹 “ {(𝐹𝐴)}) ⊆ (𝐹𝐵))
1413sseld 3920 . . 3 ((𝐹𝐴) ∈ 𝐵 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) → 𝐴 ∈ (𝐹𝐵)))
1510, 14syl5com 31 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
16 fvimacnvi 6929 . . . 4 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
1716ex 413 . . 3 (Fun 𝐹 → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1817adantr 481 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1915, 18impbid 211 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3432  wss 3887  {csn 4561  cop 4567  ccnv 5588  dom cdm 5589  cima 5592  Fun wfun 6427  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  funimass3  6931  elpreima  6935  iinpreima  6946  isr0  22888  rnelfmlem  23103  rnelfm  23104  fmfnfmlem2  23106  fmfnfmlem4  23108  fmfnfm  23109  metustid  23710  metustsym  23711  metustexhalf  23712  xppreima  30983  rhmpreimaidl  31603  dstfrvel  32440  ballotlemrv  32486  bj-fvimacnv0  35457  bj-isrvec  35465  grpokerinj  36051  diaintclN  39072  dibintclN  39181  dihintcl  39358  arearect  41046  areaquad  41047
  Copyright terms: Public domain W3C validator