MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnv Structured version   Visualization version   GIF version

Theorem fvimacnv 7086
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 6661 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
fvimacnv ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))

Proof of Theorem fvimacnv
StepHypRef Expression
1 funfvop 7083 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 fvex 6933 . . . . . . 7 (𝐹𝐴) ∈ V
3 opelcnvg 5905 . . . . . . 7 (((𝐹𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
42, 3mpan 689 . . . . . 6 (𝐴 ∈ dom 𝐹 → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
54adantl 481 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
61, 5mpbird 257 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹)
7 elimasng 6118 . . . . . 6 (((𝐹𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
82, 7mpan 689 . . . . 5 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
98adantl 481 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
106, 9mpbird 257 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐹 “ {(𝐹𝐴)}))
112snss 4810 . . . . 5 ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵)
12 imass2 6132 . . . . 5 ({(𝐹𝐴)} ⊆ 𝐵 → (𝐹 “ {(𝐹𝐴)}) ⊆ (𝐹𝐵))
1311, 12sylbi 217 . . . 4 ((𝐹𝐴) ∈ 𝐵 → (𝐹 “ {(𝐹𝐴)}) ⊆ (𝐹𝐵))
1413sseld 4007 . . 3 ((𝐹𝐴) ∈ 𝐵 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) → 𝐴 ∈ (𝐹𝐵)))
1510, 14syl5com 31 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
16 fvimacnvi 7085 . . . 4 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
1716ex 412 . . 3 (Fun 𝐹 → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1817adantr 480 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1915, 18impbid 212 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3488  wss 3976  {csn 4648  cop 4654  ccnv 5699  dom cdm 5700  cima 5703  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  funimass3  7087  elpreima  7091  iinpreima  7102  rhmpreimaidl  21310  isr0  23766  rnelfmlem  23981  rnelfm  23982  fmfnfmlem2  23984  fmfnfmlem4  23986  fmfnfm  23987  metustid  24588  metustsym  24589  metustexhalf  24590  xppreima  32664  dstfrvel  34438  ballotlemrv  34484  bj-fvimacnv0  37252  bj-isrvec  37260  grpokerinj  37853  diaintclN  41015  dibintclN  41124  dihintcl  41301  aks6d1c2lem4  42084  aks6d1c6lem2  42128  rhmqusspan  42142  arearect  43176  areaquad  43177
  Copyright terms: Public domain W3C validator