MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcnv Structured version   Visualization version   GIF version

Theorem opelcnv 5790
Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995.)
Hypotheses
Ref Expression
opelcnv.1 𝐴 ∈ V
opelcnv.2 𝐵 ∈ V
Assertion
Ref Expression
opelcnv (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)

Proof of Theorem opelcnv
StepHypRef Expression
1 opelcnv.1 . 2 𝐴 ∈ V
2 opelcnv.2 . 2 𝐵 ∈ V
3 opelcnvg 5789 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
41, 2, 3mp2an 689 1 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  Vcvv 3432  cop 4567  ccnv 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597
This theorem is referenced by:  cnvopab  6042  cnvdif  6047  dfrel2  6092  cnvcnvsn  6122  cnvresima  6133  dfco2  6149  cnviin  6189  fcnvres  6651  cnvf1olem  7950  cnvimadfsn  7988  dmtpos  8054  dftpos4  8061  tpostpos  8062  brsdom2  8884  fsumcom2  15486  fprodcom2  15694  gsumcom2  19576  metustsym  23711  gsumhashmul  31316  cnvco1  33726  cnvco2  33727  cnviun  41258
  Copyright terms: Public domain W3C validator