MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcnv Structured version   Visualization version   GIF version

Theorem opelcnv 5845
Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995.)
Hypotheses
Ref Expression
opelcnv.1 𝐴 ∈ V
opelcnv.2 𝐵 ∈ V
Assertion
Ref Expression
opelcnv (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)

Proof of Theorem opelcnv
StepHypRef Expression
1 opelcnv.1 . 2 𝐴 ∈ V
2 opelcnv.2 . 2 𝐵 ∈ V
3 opelcnvg 5844 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
41, 2, 3mp2an 692 1 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3447  cop 4595  ccnv 5637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-cnv 5646
This theorem is referenced by:  cnvopab  6110  cnvopabOLD  6111  cnvdif  6116  dfrel2  6162  cnvcnvsn  6192  cnvresima  6203  dfco2  6218  cnviin  6259  fcnvres  6737  cnvf1olem  8089  cnvimadfsn  8151  dmtpos  8217  dftpos4  8224  tpostpos  8225  brsdom2  9065  fsumcom2  15740  fprodcom2  15950  gsumcom2  19905  metustsym  24443  gsumhashmul  33001  cnvco1  35746  cnvco2  35747  cnviun  43639  tposideq  48876
  Copyright terms: Public domain W3C validator