Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelcnv | Structured version Visualization version GIF version |
Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
opelcnv.1 | ⊢ 𝐴 ∈ V |
opelcnv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelcnv | ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelcnvg 5717 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2113 Vcvv 3397 〈cop 4519 ◡ccnv 5518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3399 df-dif 3844 df-un 3846 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-br 5028 df-opab 5090 df-cnv 5527 |
This theorem is referenced by: cnvopab 5965 cnvdif 5970 dfrel2 6015 cnvcnvsn 6045 cnvresima 6056 dfco2 6072 cnviin 6112 fcnvres 6549 cnvf1olem 7824 cnvimadfsn 7860 dmtpos 7926 dftpos4 7933 tpostpos 7934 brsdom2 8684 fsumcom2 15215 fprodcom2 15423 gsumcom2 19207 metustsym 23301 gsumhashmul 30885 cnvco1 33290 cnvco2 33291 cnviun 40788 |
Copyright terms: Public domain | W3C validator |