MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcnv Structured version   Visualization version   GIF version

Theorem opelcnv 5906
Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995.)
Hypotheses
Ref Expression
opelcnv.1 𝐴 ∈ V
opelcnv.2 𝐵 ∈ V
Assertion
Ref Expression
opelcnv (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)

Proof of Theorem opelcnv
StepHypRef Expression
1 opelcnv.1 . 2 𝐴 ∈ V
2 opelcnv.2 . 2 𝐵 ∈ V
3 opelcnvg 5905 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
41, 2, 3mp2an 691 1 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Vcvv 3488  cop 4654  ccnv 5699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708
This theorem is referenced by:  cnvopab  6169  cnvopabOLD  6170  cnvdif  6175  dfrel2  6220  cnvcnvsn  6250  cnvresima  6261  dfco2  6276  cnviin  6317  fcnvres  6798  cnvf1olem  8151  cnvimadfsn  8213  dmtpos  8279  dftpos4  8286  tpostpos  8287  brsdom2  9163  fsumcom2  15822  fprodcom2  16032  gsumcom2  20017  metustsym  24589  gsumhashmul  33040  cnvco1  35721  cnvco2  35722  cnviun  43612
  Copyright terms: Public domain W3C validator