| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelcnv | Structured version Visualization version GIF version | ||
| Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 | ⊢ 𝐴 ∈ V |
| opelcnv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelcnv | ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelcnvg 5835 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3444 〈cop 4591 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: cnvopab 6099 cnvopabOLD 6100 cnvdif 6105 dfrel2 6151 cnvcnvsn 6181 cnvresima 6192 dfco2 6207 cnviin 6248 fcnvres 6720 cnvf1olem 8067 cnvimadfsn 8129 dmtpos 8195 dftpos4 8202 tpostpos 8203 brsdom2 9043 fsumcom2 15718 fprodcom2 15928 gsumcom2 19891 metustsym 24478 gsumhashmul 33046 cnvco1 35741 cnvco2 35742 cnviun 43634 tposideq 48871 |
| Copyright terms: Public domain | W3C validator |