MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcnv Structured version   Visualization version   GIF version

Theorem opelcnv 5824
Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995.)
Hypotheses
Ref Expression
opelcnv.1 𝐴 ∈ V
opelcnv.2 𝐵 ∈ V
Assertion
Ref Expression
opelcnv (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)

Proof of Theorem opelcnv
StepHypRef Expression
1 opelcnv.1 . 2 𝐴 ∈ V
2 opelcnv.2 . 2 𝐵 ∈ V
3 opelcnvg 5823 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
41, 2, 3mp2an 692 1 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3436  cop 4583  ccnv 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-cnv 5627
This theorem is referenced by:  cnvopab  6086  cnvopabOLD  6087  cnvdif  6092  dfrel2  6138  cnvcnvsn  6168  cnvresima  6179  dfco2  6194  cnviin  6234  fcnvres  6701  cnvf1olem  8043  cnvimadfsn  8105  dmtpos  8171  dftpos4  8178  tpostpos  8179  brsdom2  9018  fsumcom2  15681  fprodcom2  15891  gsumcom2  19854  metustsym  24441  gsumhashmul  33023  cnvco1  35752  cnvco2  35753  cnviun  43643  tposideq  48892
  Copyright terms: Public domain W3C validator