| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelcnv | Structured version Visualization version GIF version | ||
| Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 | ⊢ 𝐴 ∈ V |
| opelcnv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelcnv | ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelcnvg 5819 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 |
| This theorem is referenced by: cnvopab 6083 cnvopabOLD 6084 cnvdif 6090 dfrel2 6136 cnvcnvsn 6166 cnvresima 6177 dfco2 6192 cnviin 6233 fcnvres 6700 cnvf1olem 8040 cnvimadfsn 8102 dmtpos 8168 dftpos4 8175 tpostpos 8176 brsdom2 9014 fsumcom2 15681 fprodcom2 15891 gsumcom2 19887 metustsym 24470 gsumhashmul 33041 cnvco1 35803 cnvco2 35804 cnviun 43742 tposideq 48987 |
| Copyright terms: Public domain | W3C validator |