Step | Hyp | Ref
| Expression |
1 | | brtpos2 8167 |
. . . . 5
⊢ (𝐶 ∈ 𝑉 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{⟨𝐴, 𝐵⟩}𝐹𝐶))) |
2 | 1 | adantr 482 |
. . . 4
⊢ ((𝐶 ∈ 𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{⟨𝐴, 𝐵⟩}𝐹𝐶))) |
3 | | opex 5425 |
. . . . . . . . . 10
⊢
⟨𝐵, 𝐴⟩ ∈ V |
4 | | breldmg 5869 |
. . . . . . . . . . 11
⊢
((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ⟨𝐵, 𝐴⟩𝐹𝐶) → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹) |
5 | 4 | 3expia 1122 |
. . . . . . . . . 10
⊢
((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶 ∈ 𝑉) → (⟨𝐵, 𝐴⟩𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)) |
6 | 3, 5 | mpan 689 |
. . . . . . . . 9
⊢ (𝐶 ∈ 𝑉 → (⟨𝐵, 𝐴⟩𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)) |
7 | 6 | adantr 482 |
. . . . . . . 8
⊢ ((𝐶 ∈ 𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴⟩𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)) |
8 | | opelcnvg 5840 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ ◡dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)) |
9 | 8 | adantl 483 |
. . . . . . . 8
⊢ ((𝐶 ∈ 𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐴, 𝐵⟩ ∈ ◡dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)) |
10 | 7, 9 | sylibrd 259 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴⟩𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ ◡dom 𝐹)) |
11 | | elun1 4140 |
. . . . . . 7
⊢
(⟨𝐴, 𝐵⟩ ∈ ◡dom 𝐹 → ⟨𝐴, 𝐵⟩ ∈ (◡dom 𝐹 ∪ {∅})) |
12 | 10, 11 | syl6 35 |
. . . . . 6
⊢ ((𝐶 ∈ 𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴⟩𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ (◡dom 𝐹 ∪ {∅}))) |
13 | 12 | pm4.71rd 564 |
. . . . 5
⊢ ((𝐶 ∈ 𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴⟩𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴⟩𝐹𝐶))) |
14 | | opswap 6185 |
. . . . . . 7
⊢ ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩ |
15 | 14 | breq1i 5116 |
. . . . . 6
⊢ (∪ ◡{⟨𝐴, 𝐵⟩}𝐹𝐶 ↔ ⟨𝐵, 𝐴⟩𝐹𝐶) |
16 | 15 | anbi2i 624 |
. . . . 5
⊢
((⟨𝐴, 𝐵⟩ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{⟨𝐴, 𝐵⟩}𝐹𝐶) ↔ (⟨𝐴, 𝐵⟩ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴⟩𝐹𝐶)) |
17 | 13, 16 | bitr4di 289 |
. . . 4
⊢ ((𝐶 ∈ 𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴⟩𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{⟨𝐴, 𝐵⟩}𝐹𝐶))) |
18 | 2, 17 | bitr4d 282 |
. . 3
⊢ ((𝐶 ∈ 𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴⟩𝐹𝐶)) |
19 | 18 | ex 414 |
. 2
⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴⟩𝐹𝐶))) |
20 | | brtpos0 8168 |
. . 3
⊢ (𝐶 ∈ 𝑉 → (∅tpos 𝐹𝐶 ↔ ∅𝐹𝐶)) |
21 | | opprc 4857 |
. . . . 5
⊢ (¬
(𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅) |
22 | 21 | breq1d 5119 |
. . . 4
⊢ (¬
(𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ∅tpos 𝐹𝐶)) |
23 | | ancom 462 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
24 | | opprc 4857 |
. . . . . 6
⊢ (¬
(𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅) |
25 | 24 | breq1d 5119 |
. . . . 5
⊢ (¬
(𝐵 ∈ V ∧ 𝐴 ∈ V) → (⟨𝐵, 𝐴⟩𝐹𝐶 ↔ ∅𝐹𝐶)) |
26 | 23, 25 | sylnbi 330 |
. . . 4
⊢ (¬
(𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐵, 𝐴⟩𝐹𝐶 ↔ ∅𝐹𝐶)) |
27 | 22, 26 | bibi12d 346 |
. . 3
⊢ (¬
(𝐴 ∈ V ∧ 𝐵 ∈ V) → ((⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴⟩𝐹𝐶) ↔ (∅tpos 𝐹𝐶 ↔ ∅𝐹𝐶))) |
28 | 20, 27 | syl5ibrcom 247 |
. 2
⊢ (𝐶 ∈ 𝑉 → (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴⟩𝐹𝐶))) |
29 | 19, 28 | pm2.61d 179 |
1
⊢ (𝐶 ∈ 𝑉 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴⟩𝐹𝐶)) |