MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtpos Structured version   Visualization version   GIF version

Theorem brtpos 8234
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos (𝐶𝑉 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))

Proof of Theorem brtpos
StepHypRef Expression
1 brtpos2 8231 . . . . 5 (𝐶𝑉 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
21adantr 480 . . . 4 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
3 opex 5439 . . . . . . . . . 10 𝐵, 𝐴⟩ ∈ V
4 breldmg 5889 . . . . . . . . . . 11 ((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑉 ∧ ⟨𝐵, 𝐴𝐹𝐶) → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)
543expia 1121 . . . . . . . . . 10 ((⟨𝐵, 𝐴⟩ ∈ V ∧ 𝐶𝑉) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
63, 5mpan 690 . . . . . . . . 9 (𝐶𝑉 → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
76adantr 480 . . . . . . . 8 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
8 opelcnvg 5860 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
98adantl 481 . . . . . . . 8 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹))
107, 9sylibrd 259 . . . . . . 7 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
11 elun1 4157 . . . . . . 7 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}))
1210, 11syl6 35 . . . . . 6 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴𝐹𝐶 → ⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅})))
1312pm4.71rd 562 . . . . 5 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴𝐹𝐶)))
14 opswap 6218 . . . . . . 7 {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴
1514breq1i 5126 . . . . . 6 ( {⟨𝐴, 𝐵⟩}𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶)
1615anbi2i 623 . . . . 5 ((⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶) ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ ⟨𝐵, 𝐴𝐹𝐶))
1713, 16bitr4di 289 . . . 4 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐵, 𝐴𝐹𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (dom 𝐹 ∪ {∅}) ∧ {⟨𝐴, 𝐵⟩}𝐹𝐶)))
182, 17bitr4d 282 . . 3 ((𝐶𝑉 ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
1918ex 412 . 2 (𝐶𝑉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶)))
20 brtpos0 8232 . . 3 (𝐶𝑉 → (∅tpos 𝐹𝐶 ↔ ∅𝐹𝐶))
21 opprc 4872 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
2221breq1d 5129 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ∅tpos 𝐹𝐶))
23 ancom 460 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V))
24 opprc 4872 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅)
2524breq1d 5129 . . . . 5 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → (⟨𝐵, 𝐴𝐹𝐶 ↔ ∅𝐹𝐶))
2623, 25sylnbi 330 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐵, 𝐴𝐹𝐶 ↔ ∅𝐹𝐶))
2722, 26bibi12d 345 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶) ↔ (∅tpos 𝐹𝐶 ↔ ∅𝐹𝐶)))
2820, 27syl5ibrcom 247 . 2 (𝐶𝑉 → (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶)))
2919, 28pm2.61d 179 1 (𝐶𝑉 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3459  cun 3924  c0 4308  {csn 4601  cop 4607   cuni 4883   class class class wbr 5119  ccnv 5653  dom cdm 5654  tpos ctpos 8224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-tpos 8225
This theorem is referenced by:  ottpos  8235  relbrtpos  8236  dmtpos  8237  rntpos  8238  ovtpos  8240  dftpos3  8243  tpostpos  8245
  Copyright terms: Public domain W3C validator