MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopab2 Structured version   Visualization version   GIF version

Theorem opelopab2 5454
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by NM, 14-Oct-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopab2.1 (𝑥 = 𝐴 → (𝜑𝜓))
opelopab2.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopab2 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem opelopab2
StepHypRef Expression
1 opelopab2.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
2 opelopab2.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
31, 2sylan9bb 510 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒))
43opelopab2a 5448 1 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cop 4567  {copab 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137
This theorem is referenced by:  brecop  8599  divides  15965  cmtvalN  37225  cvrval  37283
  Copyright terms: Public domain W3C validator