| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelopab | Structured version Visualization version GIF version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 16-May-1995.) |
| Ref | Expression |
|---|---|
| opelopab.1 | ⊢ 𝐴 ∈ V |
| opelopab.2 | ⊢ 𝐵 ∈ V |
| opelopab.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| opelopab.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opelopab | ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopab.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelopab.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelopab.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | opelopab.4 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | opelopabg 5501 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 {copab 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 |
| This theorem is referenced by: opabid2 5794 dfres2 6015 f1oiso 7329 elopabi 8044 xporderlem 8109 cnlnssadj 32016 areacirclem5 37713 dicopelval 41178 dih1dimatlem 41330 pellexlem3 42826 fsovrfovd 44005 |
| Copyright terms: Public domain | W3C validator |