MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabgf Structured version   Visualization version   GIF version

Theorem opelopabgf 5429
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 5427 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.)
Hypotheses
Ref Expression
opelopabgf.x 𝑥𝜓
opelopabgf.y 𝑦𝜒
opelopabgf.1 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabgf.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopabgf ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opelopabgf
StepHypRef Expression
1 opelopabsb 5419 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 nfcv 2979 . . . . 5 𝑥𝐵
3 opelopabgf.x . . . . 5 𝑥𝜓
42, 3nfsbcw 3796 . . . 4 𝑥[𝐵 / 𝑦]𝜓
5 opelopabgf.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
65sbcbidv 3829 . . . 4 (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
74, 6sbciegf 3811 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
8 opelopabgf.y . . . 4 𝑦𝜒
9 opelopabgf.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
108, 9sbciegf 3811 . . 3 (𝐵𝑊 → ([𝐵 / 𝑦]𝜓𝜒))
117, 10sylan9bb 512 . 2 ((𝐴𝑉𝐵𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜒))
121, 11syl5bb 285 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wnf 1784  wcel 2114  [wsbc 3774  cop 4575  {copab 5130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-opab 5131
This theorem is referenced by:  oprabv  7216
  Copyright terms: Public domain W3C validator