![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelopabgf | Structured version Visualization version GIF version |
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 5531 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.) |
Ref | Expression |
---|---|
opelopabgf.x | ⊢ Ⅎ𝑥𝜓 |
opelopabgf.y | ⊢ Ⅎ𝑦𝜒 |
opelopabgf.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopabgf.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opelopabgf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabsb 5523 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
2 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
3 | opelopabgf.x | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nfsbcw 3794 | . . . 4 ⊢ Ⅎ𝑥[𝐵 / 𝑦]𝜓 |
5 | opelopabgf.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 5 | sbcbidv 3831 | . . . 4 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
7 | 4, 6 | sbciegf 3811 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
8 | opelopabgf.y | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
9 | opelopabgf.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
10 | 8, 9 | sbciegf 3811 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
11 | 7, 10 | sylan9bb 509 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜒)) |
12 | 1, 11 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 [wsbc 3772 ⟨cop 4629 {copab 5203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-opab 5204 |
This theorem is referenced by: oprabv 7465 |
Copyright terms: Public domain | W3C validator |