![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelopabgf | Structured version Visualization version GIF version |
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 5548 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.) |
Ref | Expression |
---|---|
opelopabgf.x | ⊢ Ⅎ𝑥𝜓 |
opelopabgf.y | ⊢ Ⅎ𝑦𝜒 |
opelopabgf.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopabgf.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opelopabgf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabsb 5540 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
2 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
3 | opelopabgf.x | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nfsbcw 3813 | . . . 4 ⊢ Ⅎ𝑥[𝐵 / 𝑦]𝜓 |
5 | opelopabgf.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 5 | sbcbidv 3851 | . . . 4 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
7 | 4, 6 | sbciegf 3831 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
8 | opelopabgf.y | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
9 | opelopabgf.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
10 | 8, 9 | sbciegf 3831 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
11 | 7, 10 | sylan9bb 509 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜒)) |
12 | 1, 11 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 [wsbc 3791 〈cop 4637 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-opab 5211 |
This theorem is referenced by: oprabv 7493 |
Copyright terms: Public domain | W3C validator |