MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabgf Structured version   Visualization version   GIF version

Theorem opelopabgf 5446
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopabg 5444 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018.)
Hypotheses
Ref Expression
opelopabgf.x 𝑥𝜓
opelopabgf.y 𝑦𝜒
opelopabgf.1 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabgf.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopabgf ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opelopabgf
StepHypRef Expression
1 opelopabsb 5436 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 nfcv 2906 . . . . 5 𝑥𝐵
3 opelopabgf.x . . . . 5 𝑥𝜓
42, 3nfsbcw 3733 . . . 4 𝑥[𝐵 / 𝑦]𝜓
5 opelopabgf.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
65sbcbidv 3770 . . . 4 (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
74, 6sbciegf 3750 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
8 opelopabgf.y . . . 4 𝑦𝜒
9 opelopabgf.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
108, 9sbciegf 3750 . . 3 (𝐵𝑊 → ([𝐵 / 𝑦]𝜓𝜒))
117, 10sylan9bb 509 . 2 ((𝐴𝑉𝐵𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜒))
121, 11syl5bb 282 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  [wsbc 3711  cop 4564  {copab 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133
This theorem is referenced by:  oprabv  7313
  Copyright terms: Public domain W3C validator