| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelopaba | Structured version Visualization version GIF version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopaba.1 | ⊢ 𝐴 ∈ V |
| opelopaba.2 | ⊢ 𝐵 ∈ V |
| opelopaba.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| opelopaba | ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopaba.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelopaba.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelopaba.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | opelopabga 5513 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 1, 2, 4 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 〈cop 4612 {copab 5186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 |
| This theorem is referenced by: canthwelem 10669 canthwe 10670 bcthlem1 25281 satf0op 35404 rfovcnvf1od 43995 |
| Copyright terms: Public domain | W3C validator |