Proof of Theorem bcthlem1
| Step | Hyp | Ref
| Expression |
| 1 | | opabssxp 5752 |
. . . . . . 7
⊢
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))} ⊆ (𝑋 ×
ℝ+) |
| 2 | | bcthlem.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| 3 | | elfvdm 6918 |
. . . . . . . . 9
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet) |
| 4 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ dom CMet) |
| 5 | | reex 11225 |
. . . . . . . . 9
⊢ ℝ
∈ V |
| 6 | | rpssre 13021 |
. . . . . . . . 9
⊢
ℝ+ ⊆ ℝ |
| 7 | 5, 6 | ssexi 5297 |
. . . . . . . 8
⊢
ℝ+ ∈ V |
| 8 | | xpexg 7749 |
. . . . . . . 8
⊢ ((𝑋 ∈ dom CMet ∧
ℝ+ ∈ V) → (𝑋 × ℝ+) ∈
V) |
| 9 | 4, 7, 8 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → (𝑋 × ℝ+) ∈
V) |
| 10 | | ssexg 5298 |
. . . . . . 7
⊢
(({〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))} ⊆ (𝑋 × ℝ+) ∧ (𝑋 × ℝ+)
∈ V) → {〈𝑥,
𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))} ∈ V) |
| 11 | 1, 9, 10 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))} ∈ V) |
| 12 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐴 → (1 / 𝑘) = (1 / 𝐴)) |
| 13 | 12 | breq2d 5136 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐴 → (𝑟 < (1 / 𝑘) ↔ 𝑟 < (1 / 𝐴))) |
| 14 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐴 → (𝑀‘𝑘) = (𝑀‘𝐴)) |
| 15 | 14 | difeq2d 4106 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐴 → (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) = (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝐴))) |
| 16 | 15 | sseq2d 3996 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐴 → (((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ↔ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝐴)))) |
| 17 | 13, 16 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑘 = 𝐴 → ((𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) ↔ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝐴))))) |
| 18 | 17 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑘 = 𝐴 → (((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝐴)))))) |
| 19 | 18 | opabbidv 5190 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} = {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝐴))))}) |
| 20 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐵 → ((ball‘𝐷)‘𝑧) = ((ball‘𝐷)‘𝐵)) |
| 21 | 20 | difeq1d 4105 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐵 → (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝐴)) = (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))) |
| 22 | 21 | sseq2d 3996 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐵 → (((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝐴)) ↔ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)))) |
| 23 | 22 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑧 = 𝐵 → ((𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝐴))) ↔ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))) |
| 24 | 23 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝐴)))) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)))))) |
| 25 | 24 | opabbidv 5190 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝐴))))} = {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))}) |
| 26 | | bcthlem.5 |
. . . . . . 7
⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) |
| 27 | 19, 25, 26 | ovmpog 7571 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+) ∧
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))} ∈ V) → (𝐴𝐹𝐵) = {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))}) |
| 28 | 11, 27 | syl3an3 1165 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+) ∧ 𝜑) → (𝐴𝐹𝐵) = {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))}) |
| 29 | 28 | 3expa 1118 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+)) ∧ 𝜑) → (𝐴𝐹𝐵) = {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))}) |
| 30 | 29 | ancoms 458 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+))) →
(𝐴𝐹𝐵) = {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))}) |
| 31 | 30 | eleq2d 2821 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+))) →
(𝐶 ∈ (𝐴𝐹𝐵) ↔ 𝐶 ∈ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))})) |
| 32 | 1 | sseli 3959 |
. . 3
⊢ (𝐶 ∈ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))} → 𝐶 ∈ (𝑋 ×
ℝ+)) |
| 33 | | simp1 1136 |
. . 3
⊢ ((𝐶 ∈ (𝑋 × ℝ+) ∧
(2nd ‘𝐶)
< (1 / 𝐴) ∧
((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))) → 𝐶 ∈ (𝑋 ×
ℝ+)) |
| 34 | | 1st2nd2 8032 |
. . . . . 6
⊢ (𝐶 ∈ (𝑋 × ℝ+) → 𝐶 = 〈(1st
‘𝐶), (2nd
‘𝐶)〉) |
| 35 | 34 | eleq1d 2820 |
. . . . 5
⊢ (𝐶 ∈ (𝑋 × ℝ+) → (𝐶 ∈ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))} ↔ 〈(1st
‘𝐶), (2nd
‘𝐶)〉 ∈
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))})) |
| 36 | | fvex 6894 |
. . . . . 6
⊢
(1st ‘𝐶) ∈ V |
| 37 | | fvex 6894 |
. . . . . 6
⊢
(2nd ‘𝐶) ∈ V |
| 38 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝑥 = (1st ‘𝐶) → (𝑥 ∈ 𝑋 ↔ (1st ‘𝐶) ∈ 𝑋)) |
| 39 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝑟 = (2nd ‘𝐶) → (𝑟 ∈ ℝ+ ↔
(2nd ‘𝐶)
∈ ℝ+)) |
| 40 | 38, 39 | bi2anan9 638 |
. . . . . . 7
⊢ ((𝑥 = (1st ‘𝐶) ∧ 𝑟 = (2nd ‘𝐶)) → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ↔
((1st ‘𝐶)
∈ 𝑋 ∧
(2nd ‘𝐶)
∈ ℝ+))) |
| 41 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑥 = (1st ‘𝐶) ∧ 𝑟 = (2nd ‘𝐶)) → 𝑟 = (2nd ‘𝐶)) |
| 42 | 41 | breq1d 5134 |
. . . . . . . 8
⊢ ((𝑥 = (1st ‘𝐶) ∧ 𝑟 = (2nd ‘𝐶)) → (𝑟 < (1 / 𝐴) ↔ (2nd ‘𝐶) < (1 / 𝐴))) |
| 43 | | oveq12 7419 |
. . . . . . . . . 10
⊢ ((𝑥 = (1st ‘𝐶) ∧ 𝑟 = (2nd ‘𝐶)) → (𝑥(ball‘𝐷)𝑟) = ((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶))) |
| 44 | 43 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((𝑥 = (1st ‘𝐶) ∧ 𝑟 = (2nd ‘𝐶)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) = ((cls‘𝐽)‘((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶)))) |
| 45 | 44 | sseq1d 3995 |
. . . . . . . 8
⊢ ((𝑥 = (1st ‘𝐶) ∧ 𝑟 = (2nd ‘𝐶)) → (((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)) ↔ ((cls‘𝐽)‘((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)))) |
| 46 | 42, 45 | anbi12d 632 |
. . . . . . 7
⊢ ((𝑥 = (1st ‘𝐶) ∧ 𝑟 = (2nd ‘𝐶)) → ((𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))) ↔ ((2nd ‘𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))) |
| 47 | 40, 46 | anbi12d 632 |
. . . . . 6
⊢ ((𝑥 = (1st ‘𝐶) ∧ 𝑟 = (2nd ‘𝐶)) → (((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)))) ↔ (((1st ‘𝐶) ∈ 𝑋 ∧ (2nd ‘𝐶) ∈ ℝ+)
∧ ((2nd ‘𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)))))) |
| 48 | 36, 37, 47 | opelopaba 5516 |
. . . . 5
⊢
(〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))} ↔ (((1st ‘𝐶) ∈ 𝑋 ∧ (2nd ‘𝐶) ∈ ℝ+)
∧ ((2nd ‘𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))) |
| 49 | 35, 48 | bitrdi 287 |
. . . 4
⊢ (𝐶 ∈ (𝑋 × ℝ+) → (𝐶 ∈ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))} ↔ (((1st ‘𝐶) ∈ 𝑋 ∧ (2nd ‘𝐶) ∈ ℝ+)
∧ ((2nd ‘𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)))))) |
| 50 | 34 | eleq1d 2820 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑋 × ℝ+) → (𝐶 ∈ (𝑋 × ℝ+) ↔
〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈ (𝑋 ×
ℝ+))) |
| 51 | | opelxp 5695 |
. . . . . . 7
⊢
(〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈ (𝑋 × ℝ+) ↔
((1st ‘𝐶)
∈ 𝑋 ∧
(2nd ‘𝐶)
∈ ℝ+)) |
| 52 | 50, 51 | bitr2di 288 |
. . . . . 6
⊢ (𝐶 ∈ (𝑋 × ℝ+) →
(((1st ‘𝐶)
∈ 𝑋 ∧
(2nd ‘𝐶)
∈ ℝ+) ↔ 𝐶 ∈ (𝑋 ×
ℝ+))) |
| 53 | | df-ov 7413 |
. . . . . . . . . 10
⊢
((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶)) = ((ball‘𝐷)‘〈(1st ‘𝐶), (2nd ‘𝐶)〉) |
| 54 | 34 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑋 × ℝ+) →
((ball‘𝐷)‘𝐶) = ((ball‘𝐷)‘〈(1st
‘𝐶), (2nd
‘𝐶)〉)) |
| 55 | 53, 54 | eqtr4id 2790 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑋 × ℝ+) →
((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶)) = ((ball‘𝐷)‘𝐶)) |
| 56 | 55 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑋 × ℝ+) →
((cls‘𝐽)‘((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶))) = ((cls‘𝐽)‘((ball‘𝐷)‘𝐶))) |
| 57 | 56 | sseq1d 3995 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑋 × ℝ+) →
(((cls‘𝐽)‘((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)) ↔ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)))) |
| 58 | 57 | anbi2d 630 |
. . . . . 6
⊢ (𝐶 ∈ (𝑋 × ℝ+) →
(((2nd ‘𝐶)
< (1 / 𝐴) ∧
((cls‘𝐽)‘((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))) ↔ ((2nd ‘𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))) |
| 59 | 52, 58 | anbi12d 632 |
. . . . 5
⊢ (𝐶 ∈ (𝑋 × ℝ+) →
((((1st ‘𝐶) ∈ 𝑋 ∧ (2nd ‘𝐶) ∈ ℝ+)
∧ ((2nd ‘𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)))) ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧
((2nd ‘𝐶)
< (1 / 𝐴) ∧
((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)))))) |
| 60 | | 3anass 1094 |
. . . . 5
⊢ ((𝐶 ∈ (𝑋 × ℝ+) ∧
(2nd ‘𝐶)
< (1 / 𝐴) ∧
((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))) ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧
((2nd ‘𝐶)
< (1 / 𝐴) ∧
((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))) |
| 61 | 59, 60 | bitr4di 289 |
. . . 4
⊢ (𝐶 ∈ (𝑋 × ℝ+) →
((((1st ‘𝐶) ∈ 𝑋 ∧ (2nd ‘𝐶) ∈ ℝ+)
∧ ((2nd ‘𝐶) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((1st ‘𝐶)(ball‘𝐷)(2nd ‘𝐶))) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)))) ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧
(2nd ‘𝐶)
< (1 / 𝐴) ∧
((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))) |
| 62 | 49, 61 | bitrd 279 |
. . 3
⊢ (𝐶 ∈ (𝑋 × ℝ+) → (𝐶 ∈ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))} ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧
(2nd ‘𝐶)
< (1 / 𝐴) ∧
((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))) |
| 63 | 32, 33, 62 | pm5.21nii 378 |
. 2
⊢ (𝐶 ∈ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝐴) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))} ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧
(2nd ‘𝐶)
< (1 / 𝐴) ∧
((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴)))) |
| 64 | 31, 63 | bitrdi 287 |
1
⊢ ((𝜑 ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (𝑋 × ℝ+))) →
(𝐶 ∈ (𝐴𝐹𝐵) ↔ (𝐶 ∈ (𝑋 × ℝ+) ∧
(2nd ‘𝐶)
< (1 / 𝐴) ∧
((cls‘𝐽)‘((ball‘𝐷)‘𝐶)) ⊆ (((ball‘𝐷)‘𝐵) ∖ (𝑀‘𝐴))))) |