MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwe Structured version   Visualization version   GIF version

Theorem canthwe 10338
Description: The set of well-orders of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 8866. Corollary 1.4(b) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 31-May-2015.)
Hypothesis
Ref Expression
canthwe.1 𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}
Assertion
Ref Expression
canthwe (𝐴𝑉𝐴𝑂)
Distinct variable groups:   𝑥,𝑟,𝑂   𝑉,𝑟,𝑥   𝐴,𝑟,𝑥

Proof of Theorem canthwe
Dummy variables 𝑢 𝑦 𝑓 𝑣 𝑤 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . . . . . . 8 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥𝐴)
2 velpw 4535 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
31, 2sylibr 233 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ 𝒫 𝐴)
4 simp2 1135 . . . . . . . . 9 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ⊆ (𝑥 × 𝑥))
5 xpss12 5595 . . . . . . . . . 10 ((𝑥𝐴𝑥𝐴) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴))
61, 1, 5syl2anc 583 . . . . . . . . 9 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴))
74, 6sstrd 3927 . . . . . . . 8 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ⊆ (𝐴 × 𝐴))
8 velpw 4535 . . . . . . . 8 (𝑟 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑟 ⊆ (𝐴 × 𝐴))
97, 8sylibr 233 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴))
103, 9jca 511 . . . . . 6 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴)))
1110ssopab2i 5456 . . . . 5 {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ⊆ {⟨𝑥, 𝑟⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴))}
12 canthwe.1 . . . . 5 𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}
13 df-xp 5586 . . . . 5 (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) = {⟨𝑥, 𝑟⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴))}
1411, 12, 133sstr4i 3960 . . . 4 𝑂 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴))
15 pwexg 5296 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
16 sqxpexg 7583 . . . . . 6 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
1716pwexd 5297 . . . . 5 (𝐴𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V)
1815, 17xpexd 7579 . . . 4 (𝐴𝑉 → (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∈ V)
19 ssexg 5242 . . . 4 ((𝑂 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∧ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∈ V) → 𝑂 ∈ V)
2014, 18, 19sylancr 586 . . 3 (𝐴𝑉𝑂 ∈ V)
21 simpr 484 . . . . . . . 8 ((𝐴𝑉𝑢𝐴) → 𝑢𝐴)
2221snssd 4739 . . . . . . 7 ((𝐴𝑉𝑢𝐴) → {𝑢} ⊆ 𝐴)
23 0ss 4327 . . . . . . . 8 ∅ ⊆ ({𝑢} × {𝑢})
2423a1i 11 . . . . . . 7 ((𝐴𝑉𝑢𝐴) → ∅ ⊆ ({𝑢} × {𝑢}))
25 rel0 5698 . . . . . . . 8 Rel ∅
26 br0 5119 . . . . . . . . 9 ¬ 𝑢𝑢
27 wesn 5666 . . . . . . . . 9 (Rel ∅ → (∅ We {𝑢} ↔ ¬ 𝑢𝑢))
2826, 27mpbiri 257 . . . . . . . 8 (Rel ∅ → ∅ We {𝑢})
2925, 28mp1i 13 . . . . . . 7 ((𝐴𝑉𝑢𝐴) → ∅ We {𝑢})
30 snex 5349 . . . . . . . 8 {𝑢} ∈ V
31 0ex 5226 . . . . . . . 8 ∅ ∈ V
32 simpl 482 . . . . . . . . . 10 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → 𝑥 = {𝑢})
3332sseq1d 3948 . . . . . . . . 9 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑥𝐴 ↔ {𝑢} ⊆ 𝐴))
34 simpr 484 . . . . . . . . . 10 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → 𝑟 = ∅)
3532sqxpeqd 5612 . . . . . . . . . 10 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑥 × 𝑥) = ({𝑢} × {𝑢}))
3634, 35sseq12d 3950 . . . . . . . . 9 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ ∅ ⊆ ({𝑢} × {𝑢})))
37 weeq2 5569 . . . . . . . . . 10 (𝑥 = {𝑢} → (𝑟 We 𝑥𝑟 We {𝑢}))
38 weeq1 5568 . . . . . . . . . 10 (𝑟 = ∅ → (𝑟 We {𝑢} ↔ ∅ We {𝑢}))
3937, 38sylan9bb 509 . . . . . . . . 9 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑟 We 𝑥 ↔ ∅ We {𝑢}))
4033, 36, 393anbi123d 1434 . . . . . . . 8 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ ({𝑢} ⊆ 𝐴 ∧ ∅ ⊆ ({𝑢} × {𝑢}) ∧ ∅ We {𝑢})))
4130, 31, 40opelopaba 5442 . . . . . . 7 (⟨{𝑢}, ∅⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ ({𝑢} ⊆ 𝐴 ∧ ∅ ⊆ ({𝑢} × {𝑢}) ∧ ∅ We {𝑢}))
4222, 24, 29, 41syl3anbrc 1341 . . . . . 6 ((𝐴𝑉𝑢𝐴) → ⟨{𝑢}, ∅⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)})
4342, 12eleqtrrdi 2850 . . . . 5 ((𝐴𝑉𝑢𝐴) → ⟨{𝑢}, ∅⟩ ∈ 𝑂)
4443ex 412 . . . 4 (𝐴𝑉 → (𝑢𝐴 → ⟨{𝑢}, ∅⟩ ∈ 𝑂))
45 eqid 2738 . . . . . . 7 ∅ = ∅
46 snex 5349 . . . . . . . 8 {𝑣} ∈ V
4746, 31opth2 5389 . . . . . . 7 (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ ({𝑢} = {𝑣} ∧ ∅ = ∅))
4845, 47mpbiran2 706 . . . . . 6 (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ {𝑢} = {𝑣})
49 sneqbg 4771 . . . . . . 7 (𝑢 ∈ V → ({𝑢} = {𝑣} ↔ 𝑢 = 𝑣))
5049elv 3428 . . . . . 6 ({𝑢} = {𝑣} ↔ 𝑢 = 𝑣)
5148, 50bitri 274 . . . . 5 (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ 𝑢 = 𝑣)
52512a1i 12 . . . 4 (𝐴𝑉 → ((𝑢𝐴𝑣𝐴) → (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ 𝑢 = 𝑣)))
5344, 52dom2d 8736 . . 3 (𝐴𝑉 → (𝑂 ∈ V → 𝐴𝑂))
5420, 53mpd 15 . 2 (𝐴𝑉𝐴𝑂)
55 eqid 2738 . . . . . . 7 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
5655fpwwe2cbv 10317 . . . . . 6 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑤](𝑤𝑓(𝑟 ∩ (𝑤 × 𝑤))) = 𝑦))}
57 eqid 2738 . . . . . 6 dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
58 eqid 2738 . . . . . 6 (({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}) “ {( dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}𝑓({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}))}) = (({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}) “ {( dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}𝑓({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}))})
5912, 56, 57, 58canthwelem 10337 . . . . 5 (𝐴𝑉 → ¬ 𝑓:𝑂1-1𝐴)
60 f1of1 6699 . . . . 5 (𝑓:𝑂1-1-onto𝐴𝑓:𝑂1-1𝐴)
6159, 60nsyl 140 . . . 4 (𝐴𝑉 → ¬ 𝑓:𝑂1-1-onto𝐴)
6261nexdv 1940 . . 3 (𝐴𝑉 → ¬ ∃𝑓 𝑓:𝑂1-1-onto𝐴)
63 ensym 8744 . . . 4 (𝐴𝑂𝑂𝐴)
64 bren 8701 . . . 4 (𝑂𝐴 ↔ ∃𝑓 𝑓:𝑂1-1-onto𝐴)
6563, 64sylib 217 . . 3 (𝐴𝑂 → ∃𝑓 𝑓:𝑂1-1-onto𝐴)
6662, 65nsyl 140 . 2 (𝐴𝑉 → ¬ 𝐴𝑂)
67 brsdom 8718 . 2 (𝐴𝑂 ↔ (𝐴𝑂 ∧ ¬ 𝐴𝑂))
6854, 66, 67sylanbrc 582 1 (𝐴𝑉𝐴𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  Vcvv 3422  [wsbc 3711  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070  {copab 5132   We wwe 5534   × cxp 5578  ccnv 5579  dom cdm 5580  cima 5583  Rel wrel 5585  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cen 8688  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-oi 9199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator