Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ⊆ 𝐴) |
2 | | velpw 4535 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
3 | 1, 2 | sylibr 233 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ 𝒫 𝐴) |
4 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ⊆ (𝑥 × 𝑥)) |
5 | | xpss12 5595 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐴) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴)) |
6 | 1, 1, 5 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴)) |
7 | 4, 6 | sstrd 3927 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ⊆ (𝐴 × 𝐴)) |
8 | | velpw 4535 |
. . . . . . . 8
⊢ (𝑟 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑟 ⊆ (𝐴 × 𝐴)) |
9 | 7, 8 | sylibr 233 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴)) |
10 | 3, 9 | jca 511 |
. . . . . 6
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐴))) |
11 | 10 | ssopab2i 5456 |
. . . . 5
⊢
{〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ⊆ {〈𝑥, 𝑟〉 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐴))} |
12 | | canthwe.1 |
. . . . 5
⊢ 𝑂 = {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} |
13 | | df-xp 5586 |
. . . . 5
⊢
(𝒫 𝐴 ×
𝒫 (𝐴 × 𝐴)) = {〈𝑥, 𝑟〉 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐴))} |
14 | 11, 12, 13 | 3sstr4i 3960 |
. . . 4
⊢ 𝑂 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) |
15 | | pwexg 5296 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
16 | | sqxpexg 7583 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
17 | 16 | pwexd 5297 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V) |
18 | 15, 17 | xpexd 7579 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∈ V) |
19 | | ssexg 5242 |
. . . 4
⊢ ((𝑂 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∧ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∈ V) → 𝑂 ∈ V) |
20 | 14, 18, 19 | sylancr 586 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝑂 ∈ V) |
21 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
22 | 21 | snssd 4739 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → {𝑢} ⊆ 𝐴) |
23 | | 0ss 4327 |
. . . . . . . 8
⊢ ∅
⊆ ({𝑢} × {𝑢}) |
24 | 23 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → ∅ ⊆ ({𝑢} × {𝑢})) |
25 | | rel0 5698 |
. . . . . . . 8
⊢ Rel
∅ |
26 | | br0 5119 |
. . . . . . . . 9
⊢ ¬
𝑢∅𝑢 |
27 | | wesn 5666 |
. . . . . . . . 9
⊢ (Rel
∅ → (∅ We {𝑢} ↔ ¬ 𝑢∅𝑢)) |
28 | 26, 27 | mpbiri 257 |
. . . . . . . 8
⊢ (Rel
∅ → ∅ We {𝑢}) |
29 | 25, 28 | mp1i 13 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → ∅ We {𝑢}) |
30 | | snex 5349 |
. . . . . . . 8
⊢ {𝑢} ∈ V |
31 | | 0ex 5226 |
. . . . . . . 8
⊢ ∅
∈ V |
32 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → 𝑥 = {𝑢}) |
33 | 32 | sseq1d 3948 |
. . . . . . . . 9
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑥 ⊆ 𝐴 ↔ {𝑢} ⊆ 𝐴)) |
34 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → 𝑟 = ∅) |
35 | 32 | sqxpeqd 5612 |
. . . . . . . . . 10
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑥 × 𝑥) = ({𝑢} × {𝑢})) |
36 | 34, 35 | sseq12d 3950 |
. . . . . . . . 9
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ ∅ ⊆ ({𝑢} × {𝑢}))) |
37 | | weeq2 5569 |
. . . . . . . . . 10
⊢ (𝑥 = {𝑢} → (𝑟 We 𝑥 ↔ 𝑟 We {𝑢})) |
38 | | weeq1 5568 |
. . . . . . . . . 10
⊢ (𝑟 = ∅ → (𝑟 We {𝑢} ↔ ∅ We {𝑢})) |
39 | 37, 38 | sylan9bb 509 |
. . . . . . . . 9
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑟 We 𝑥 ↔ ∅ We {𝑢})) |
40 | 33, 36, 39 | 3anbi123d 1434 |
. . . . . . . 8
⊢ ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ ({𝑢} ⊆ 𝐴 ∧ ∅ ⊆ ({𝑢} × {𝑢}) ∧ ∅ We {𝑢}))) |
41 | 30, 31, 40 | opelopaba 5442 |
. . . . . . 7
⊢
(〈{𝑢},
∅〉 ∈ {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ ({𝑢} ⊆ 𝐴 ∧ ∅ ⊆ ({𝑢} × {𝑢}) ∧ ∅ We {𝑢})) |
42 | 22, 24, 29, 41 | syl3anbrc 1341 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → 〈{𝑢}, ∅〉 ∈ {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}) |
43 | 42, 12 | eleqtrrdi 2850 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴) → 〈{𝑢}, ∅〉 ∈ 𝑂) |
44 | 43 | ex 412 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑢 ∈ 𝐴 → 〈{𝑢}, ∅〉 ∈ 𝑂)) |
45 | | eqid 2738 |
. . . . . . 7
⊢ ∅ =
∅ |
46 | | snex 5349 |
. . . . . . . 8
⊢ {𝑣} ∈ V |
47 | 46, 31 | opth2 5389 |
. . . . . . 7
⊢
(〈{𝑢},
∅〉 = 〈{𝑣},
∅〉 ↔ ({𝑢} =
{𝑣} ∧ ∅ =
∅)) |
48 | 45, 47 | mpbiran2 706 |
. . . . . 6
⊢
(〈{𝑢},
∅〉 = 〈{𝑣},
∅〉 ↔ {𝑢} =
{𝑣}) |
49 | | sneqbg 4771 |
. . . . . . 7
⊢ (𝑢 ∈ V → ({𝑢} = {𝑣} ↔ 𝑢 = 𝑣)) |
50 | 49 | elv 3428 |
. . . . . 6
⊢ ({𝑢} = {𝑣} ↔ 𝑢 = 𝑣) |
51 | 48, 50 | bitri 274 |
. . . . 5
⊢
(〈{𝑢},
∅〉 = 〈{𝑣},
∅〉 ↔ 𝑢 =
𝑣) |
52 | 51 | 2a1i 12 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (〈{𝑢}, ∅〉 = 〈{𝑣}, ∅〉 ↔ 𝑢 = 𝑣))) |
53 | 44, 52 | dom2d 8736 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝑂 ∈ V → 𝐴 ≼ 𝑂)) |
54 | 20, 53 | mpd 15 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ 𝑂) |
55 | | eqid 2738 |
. . . . . . 7
⊢
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} |
56 | 55 | fpwwe2cbv 10317 |
. . . . . 6
⊢
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑤](𝑤𝑓(𝑟 ∩ (𝑤 × 𝑤))) = 𝑦))} |
57 | | eqid 2738 |
. . . . . 6
⊢ ∪ dom {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = ∪ dom
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} |
58 | | eqid 2738 |
. . . . . 6
⊢ (◡({〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘∪ dom
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}) “ {(∪
dom {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}𝑓({〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘∪ dom
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}))}) = (◡({〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘∪ dom
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}) “ {(∪
dom {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}𝑓({〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘∪ dom
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}))}) |
59 | 12, 56, 57, 58 | canthwelem 10337 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ¬ 𝑓:𝑂–1-1→𝐴) |
60 | | f1of1 6699 |
. . . . 5
⊢ (𝑓:𝑂–1-1-onto→𝐴 → 𝑓:𝑂–1-1→𝐴) |
61 | 59, 60 | nsyl 140 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ¬ 𝑓:𝑂–1-1-onto→𝐴) |
62 | 61 | nexdv 1940 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ¬ ∃𝑓 𝑓:𝑂–1-1-onto→𝐴) |
63 | | ensym 8744 |
. . . 4
⊢ (𝐴 ≈ 𝑂 → 𝑂 ≈ 𝐴) |
64 | | bren 8701 |
. . . 4
⊢ (𝑂 ≈ 𝐴 ↔ ∃𝑓 𝑓:𝑂–1-1-onto→𝐴) |
65 | 63, 64 | sylib 217 |
. . 3
⊢ (𝐴 ≈ 𝑂 → ∃𝑓 𝑓:𝑂–1-1-onto→𝐴) |
66 | 62, 65 | nsyl 140 |
. 2
⊢ (𝐴 ∈ 𝑉 → ¬ 𝐴 ≈ 𝑂) |
67 | | brsdom 8718 |
. 2
⊢ (𝐴 ≺ 𝑂 ↔ (𝐴 ≼ 𝑂 ∧ ¬ 𝐴 ≈ 𝑂)) |
68 | 54, 66, 67 | sylanbrc 582 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝑂) |