MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwe Structured version   Visualization version   GIF version

Theorem canthwe 10604
Description: The set of well-orders of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 9094. Corollary 1.4(b) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 31-May-2015.)
Hypothesis
Ref Expression
canthwe.1 𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}
Assertion
Ref Expression
canthwe (𝐴𝑉𝐴𝑂)
Distinct variable groups:   𝑥,𝑟,𝑂   𝑉,𝑟,𝑥   𝐴,𝑟,𝑥

Proof of Theorem canthwe
Dummy variables 𝑢 𝑦 𝑓 𝑣 𝑤 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . . . 8 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥𝐴)
2 velpw 4568 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
31, 2sylibr 234 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑥 ∈ 𝒫 𝐴)
4 simp2 1137 . . . . . . . . 9 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ⊆ (𝑥 × 𝑥))
5 xpss12 5653 . . . . . . . . . 10 ((𝑥𝐴𝑥𝐴) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴))
61, 1, 5syl2anc 584 . . . . . . . . 9 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥 × 𝑥) ⊆ (𝐴 × 𝐴))
74, 6sstrd 3957 . . . . . . . 8 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ⊆ (𝐴 × 𝐴))
8 velpw 4568 . . . . . . . 8 (𝑟 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑟 ⊆ (𝐴 × 𝐴))
97, 8sylibr 234 . . . . . . 7 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴))
103, 9jca 511 . . . . . 6 ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) → (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴)))
1110ssopab2i 5510 . . . . 5 {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ⊆ {⟨𝑥, 𝑟⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴))}
12 canthwe.1 . . . . 5 𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}
13 df-xp 5644 . . . . 5 (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) = {⟨𝑥, 𝑟⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 (𝐴 × 𝐴))}
1411, 12, 133sstr4i 3998 . . . 4 𝑂 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴))
15 pwexg 5333 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
16 sqxpexg 7731 . . . . . 6 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
1716pwexd 5334 . . . . 5 (𝐴𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V)
1815, 17xpexd 7727 . . . 4 (𝐴𝑉 → (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∈ V)
19 ssexg 5278 . . . 4 ((𝑂 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∧ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) ∈ V) → 𝑂 ∈ V)
2014, 18, 19sylancr 587 . . 3 (𝐴𝑉𝑂 ∈ V)
21 simpr 484 . . . . . . . 8 ((𝐴𝑉𝑢𝐴) → 𝑢𝐴)
2221snssd 4773 . . . . . . 7 ((𝐴𝑉𝑢𝐴) → {𝑢} ⊆ 𝐴)
23 0ss 4363 . . . . . . . 8 ∅ ⊆ ({𝑢} × {𝑢})
2423a1i 11 . . . . . . 7 ((𝐴𝑉𝑢𝐴) → ∅ ⊆ ({𝑢} × {𝑢}))
25 rel0 5762 . . . . . . . 8 Rel ∅
26 br0 5156 . . . . . . . . 9 ¬ 𝑢𝑢
27 wesn 5727 . . . . . . . . 9 (Rel ∅ → (∅ We {𝑢} ↔ ¬ 𝑢𝑢))
2826, 27mpbiri 258 . . . . . . . 8 (Rel ∅ → ∅ We {𝑢})
2925, 28mp1i 13 . . . . . . 7 ((𝐴𝑉𝑢𝐴) → ∅ We {𝑢})
30 vsnex 5389 . . . . . . . 8 {𝑢} ∈ V
31 0ex 5262 . . . . . . . 8 ∅ ∈ V
32 simpl 482 . . . . . . . . . 10 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → 𝑥 = {𝑢})
3332sseq1d 3978 . . . . . . . . 9 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑥𝐴 ↔ {𝑢} ⊆ 𝐴))
34 simpr 484 . . . . . . . . . 10 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → 𝑟 = ∅)
3532sqxpeqd 5670 . . . . . . . . . 10 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑥 × 𝑥) = ({𝑢} × {𝑢}))
3634, 35sseq12d 3980 . . . . . . . . 9 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ ∅ ⊆ ({𝑢} × {𝑢})))
3734, 32weeq12d 5627 . . . . . . . . 9 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → (𝑟 We 𝑥 ↔ ∅ We {𝑢}))
3833, 36, 373anbi123d 1438 . . . . . . . 8 ((𝑥 = {𝑢} ∧ 𝑟 = ∅) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ ({𝑢} ⊆ 𝐴 ∧ ∅ ⊆ ({𝑢} × {𝑢}) ∧ ∅ We {𝑢})))
3930, 31, 38opelopaba 5496 . . . . . . 7 (⟨{𝑢}, ∅⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ ({𝑢} ⊆ 𝐴 ∧ ∅ ⊆ ({𝑢} × {𝑢}) ∧ ∅ We {𝑢}))
4022, 24, 29, 39syl3anbrc 1344 . . . . . 6 ((𝐴𝑉𝑢𝐴) → ⟨{𝑢}, ∅⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)})
4140, 12eleqtrrdi 2839 . . . . 5 ((𝐴𝑉𝑢𝐴) → ⟨{𝑢}, ∅⟩ ∈ 𝑂)
4241ex 412 . . . 4 (𝐴𝑉 → (𝑢𝐴 → ⟨{𝑢}, ∅⟩ ∈ 𝑂))
43 eqid 2729 . . . . . . 7 ∅ = ∅
44 vsnex 5389 . . . . . . . 8 {𝑣} ∈ V
4544, 31opth2 5440 . . . . . . 7 (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ ({𝑢} = {𝑣} ∧ ∅ = ∅))
4643, 45mpbiran2 710 . . . . . 6 (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ {𝑢} = {𝑣})
47 sneqbg 4807 . . . . . . 7 (𝑢 ∈ V → ({𝑢} = {𝑣} ↔ 𝑢 = 𝑣))
4847elv 3452 . . . . . 6 ({𝑢} = {𝑣} ↔ 𝑢 = 𝑣)
4946, 48bitri 275 . . . . 5 (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ 𝑢 = 𝑣)
50492a1i 12 . . . 4 (𝐴𝑉 → ((𝑢𝐴𝑣𝐴) → (⟨{𝑢}, ∅⟩ = ⟨{𝑣}, ∅⟩ ↔ 𝑢 = 𝑣)))
5142, 50dom2d 8964 . . 3 (𝐴𝑉 → (𝑂 ∈ V → 𝐴𝑂))
5220, 51mpd 15 . 2 (𝐴𝑉𝐴𝑂)
53 eqid 2729 . . . . . . 7 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
5453fpwwe2cbv 10583 . . . . . 6 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑤](𝑤𝑓(𝑟 ∩ (𝑤 × 𝑤))) = 𝑦))}
55 eqid 2729 . . . . . 6 dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} = dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
56 eqid 2729 . . . . . 6 (({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}) “ {( dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}𝑓({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}))}) = (({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}) “ {( dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}𝑓({⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}‘ dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝑓(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}))})
5712, 54, 55, 56canthwelem 10603 . . . . 5 (𝐴𝑉 → ¬ 𝑓:𝑂1-1𝐴)
58 f1of1 6799 . . . . 5 (𝑓:𝑂1-1-onto𝐴𝑓:𝑂1-1𝐴)
5957, 58nsyl 140 . . . 4 (𝐴𝑉 → ¬ 𝑓:𝑂1-1-onto𝐴)
6059nexdv 1936 . . 3 (𝐴𝑉 → ¬ ∃𝑓 𝑓:𝑂1-1-onto𝐴)
61 ensym 8974 . . . 4 (𝐴𝑂𝑂𝐴)
62 bren 8928 . . . 4 (𝑂𝐴 ↔ ∃𝑓 𝑓:𝑂1-1-onto𝐴)
6361, 62sylib 218 . . 3 (𝐴𝑂 → ∃𝑓 𝑓:𝑂1-1-onto𝐴)
6460, 63nsyl 140 . 2 (𝐴𝑉 → ¬ 𝐴𝑂)
65 brsdom 8946 . 2 (𝐴𝑂 ↔ (𝐴𝑂 ∧ ¬ 𝐴𝑂))
6652, 64, 65sylanbrc 583 1 (𝐴𝑉𝐴𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3447  [wsbc 3753  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589  cop 4595   cuni 4871   class class class wbr 5107  {copab 5169   We wwe 5590   × cxp 5636  ccnv 5637  dom cdm 5638  cima 5641  Rel wrel 5643  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cen 8915  cdom 8916  csdm 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-oi 9463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator