| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > braba | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopaba.1 | ⊢ 𝐴 ∈ V |
| opelopaba.2 | ⊢ 𝐵 ∈ V |
| opelopaba.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| braba.4 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| braba | ⊢ (𝐴𝑅𝐵 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopaba.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelopaba.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelopaba.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 4 | braba.4 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 5 | 3, 4 | brabga 5472 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜓)) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 |
| This theorem is referenced by: frgpuplem 19684 2ndcctbss 23370 legov 28563 prtlem13 38915 wepwsolem 43083 fnwe2val 43090 grumnud 44327 lambert0 46926 lamberte 46927 sinnpoly 46930 sprsymrelf 47534 catprsc 49053 catprsc2 49054 |
| Copyright terms: Public domain | W3C validator |