MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  braba Structured version   Visualization version   GIF version

Theorem braba 5450
Description: The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopaba.1 𝐴 ∈ V
opelopaba.2 𝐵 ∈ V
opelopaba.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
braba.4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
braba (𝐴𝑅𝐵𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem braba
StepHypRef Expression
1 opelopaba.1 . 2 𝐴 ∈ V
2 opelopaba.2 . 2 𝐵 ∈ V
3 opelopaba.3 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
4 braba.4 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
53, 4brabga 5447 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝜓))
61, 2, 5mp2an 689 1 (𝐴𝑅𝐵𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  {copab 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137
This theorem is referenced by:  frgpuplem  19378  2ndcctbss  22606  legov  26946  prtlem13  36882  wepwsolem  40867  fnwe2val  40874  grumnud  41904  sprsymrelf  44947  catprsc  46294  catprsc2  46295
  Copyright terms: Public domain W3C validator