![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > braba | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013.) |
Ref | Expression |
---|---|
opelopaba.1 | ⊢ 𝐴 ∈ V |
opelopaba.2 | ⊢ 𝐵 ∈ V |
opelopaba.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
braba.4 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
braba | ⊢ (𝐴𝑅𝐵 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopaba.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelopaba.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelopaba.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
4 | braba.4 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
5 | 3, 4 | brabga 5536 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜓)) |
6 | 1, 2, 5 | mp2an 690 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 class class class wbr 5149 {copab 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 |
This theorem is referenced by: frgpuplem 19744 2ndcctbss 23408 legov 28466 prtlem13 38472 wepwsolem 42610 fnwe2val 42617 grumnud 43867 sprsymrelf 46974 catprsc 48207 catprsc2 48208 |
Copyright terms: Public domain | W3C validator |