Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > braba | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013.) |
Ref | Expression |
---|---|
opelopaba.1 | ⊢ 𝐴 ∈ V |
opelopaba.2 | ⊢ 𝐵 ∈ V |
opelopaba.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
braba.4 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
braba | ⊢ (𝐴𝑅𝐵 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopaba.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelopaba.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelopaba.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
4 | braba.4 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
5 | 3, 4 | brabga 5440 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜓)) |
6 | 1, 2, 5 | mp2an 688 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 |
This theorem is referenced by: frgpuplem 19293 2ndcctbss 22514 legov 26850 prtlem13 36809 wepwsolem 40783 fnwe2val 40790 grumnud 41793 sprsymrelf 44835 catprsc 46182 catprsc2 46183 |
Copyright terms: Public domain | W3C validator |