MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwelem Structured version   Visualization version   GIF version

Theorem canthwelem 10690
Description: Lemma for canthwe 10691. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
canthwe.1 𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}
canthwe.2 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
canthwe.3 𝐵 = dom 𝑊
canthwe.4 𝐶 = ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})
Assertion
Ref Expression
canthwelem (𝐴𝑉 → ¬ 𝐹:𝑂1-1𝐴)
Distinct variable groups:   𝑢,𝑟,𝑥,𝑦,𝐵   𝐶,𝑟,𝑥   𝑂,𝑟,𝑢,𝑥,𝑦   𝑉,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑢,𝑥,𝑦   𝐹,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑦,𝑢)

Proof of Theorem canthwelem
StepHypRef Expression
1 eqid 2737 . . . . . . . 8 𝐵 = 𝐵
2 eqid 2737 . . . . . . . 8 (𝑊𝐵) = (𝑊𝐵)
31, 2pm3.2i 470 . . . . . . 7 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
4 canthwe.2 . . . . . . . 8 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
5 simpl 482 . . . . . . . 8 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐴𝑉)
6 df-ov 7434 . . . . . . . . 9 (𝑥𝐹𝑟) = (𝐹‘⟨𝑥, 𝑟⟩)
7 f1f 6804 . . . . . . . . . . 11 (𝐹:𝑂1-1𝐴𝐹:𝑂𝐴)
87ad2antlr 727 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → 𝐹:𝑂𝐴)
9 simpr 484 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥))
10 opabidw 5529 . . . . . . . . . . . 12 (⟨𝑥, 𝑟⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥))
119, 10sylibr 234 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → ⟨𝑥, 𝑟⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)})
12 canthwe.1 . . . . . . . . . . 11 𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}
1311, 12eleqtrrdi 2852 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → ⟨𝑥, 𝑟⟩ ∈ 𝑂)
148, 13ffvelcdmd 7105 . . . . . . . . 9 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝐹‘⟨𝑥, 𝑟⟩) ∈ 𝐴)
156, 14eqeltrid 2845 . . . . . . . 8 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
16 canthwe.3 . . . . . . . 8 𝐵 = dom 𝑊
174, 5, 15, 16fpwwe2 10683 . . . . . . 7 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝐵𝑊(𝑊𝐵) ∧ (𝐵𝐹(𝑊𝐵)) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
183, 17mpbiri 258 . . . . . 6 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝑊(𝑊𝐵) ∧ (𝐵𝐹(𝑊𝐵)) ∈ 𝐵))
1918simprd 495 . . . . 5 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝐹(𝑊𝐵)) ∈ 𝐵)
20 canthwe.4 . . . . . . . . . 10 𝐶 = ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})
2120, 20xpeq12i 5713 . . . . . . . . . . 11 (𝐶 × 𝐶) = (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) × ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}))
2221ineq2i 4217 . . . . . . . . . 10 ((𝑊𝐵) ∩ (𝐶 × 𝐶)) = ((𝑊𝐵) ∩ (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) × ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})))
2320, 22oveq12i 7443 . . . . . . . . 9 (𝐶𝐹((𝑊𝐵) ∩ (𝐶 × 𝐶))) = (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})𝐹((𝑊𝐵) ∩ (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) × ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}))))
2418simpld 494 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐵𝑊(𝑊𝐵))
254, 5, 24fpwwe2lem3 10673 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝑂1-1𝐴) ∧ (𝐵𝐹(𝑊𝐵)) ∈ 𝐵) → (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})𝐹((𝑊𝐵) ∩ (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) × ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})))) = (𝐵𝐹(𝑊𝐵)))
2619, 25mpdan 687 . . . . . . . . 9 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})𝐹((𝑊𝐵) ∩ (((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) × ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})))) = (𝐵𝐹(𝑊𝐵)))
2723, 26eqtrid 2789 . . . . . . . 8 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐶𝐹((𝑊𝐵) ∩ (𝐶 × 𝐶))) = (𝐵𝐹(𝑊𝐵)))
28 df-ov 7434 . . . . . . . 8 (𝐶𝐹((𝑊𝐵) ∩ (𝐶 × 𝐶))) = (𝐹‘⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩)
29 df-ov 7434 . . . . . . . 8 (𝐵𝐹(𝑊𝐵)) = (𝐹‘⟨𝐵, (𝑊𝐵)⟩)
3027, 28, 293eqtr3g 2800 . . . . . . 7 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐹‘⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩) = (𝐹‘⟨𝐵, (𝑊𝐵)⟩))
31 simpr 484 . . . . . . . 8 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐹:𝑂1-1𝐴)
32 cnvimass 6100 . . . . . . . . . . . . 13 ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) ⊆ dom (𝑊𝐵)
334, 5fpwwe2lem2 10672 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 [((𝑊𝐵) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝐵) ∩ (𝑢 × 𝑢))) = 𝑦))))
3424, 33mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 [((𝑊𝐵) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝐵) ∩ (𝑢 × 𝑢))) = 𝑦)))
3534simpld 494 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)))
3635simprd 495 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝑊𝐵) ⊆ (𝐵 × 𝐵))
37 dmss 5913 . . . . . . . . . . . . . . 15 ((𝑊𝐵) ⊆ (𝐵 × 𝐵) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
3836, 37syl 17 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐹:𝑂1-1𝐴) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
39 dmxpss 6191 . . . . . . . . . . . . . 14 dom (𝐵 × 𝐵) ⊆ 𝐵
4038, 39sstrdi 3996 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹:𝑂1-1𝐴) → dom (𝑊𝐵) ⊆ 𝐵)
4132, 40sstrid 3995 . . . . . . . . . . . 12 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) ⊆ 𝐵)
4220, 41eqsstrid 4022 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐶𝐵)
4335simpld 494 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐵𝐴)
4442, 43sstrd 3994 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐶𝐴)
45 inss2 4238 . . . . . . . . . . 11 ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶)
4645a1i 11 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶))
4734simprd 495 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 [((𝑊𝐵) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝐵) ∩ (𝑢 × 𝑢))) = 𝑦))
4847simpld 494 . . . . . . . . . . . 12 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝑊𝐵) We 𝐵)
49 wess 5671 . . . . . . . . . . . 12 (𝐶𝐵 → ((𝑊𝐵) We 𝐵 → (𝑊𝐵) We 𝐶))
5042, 48, 49sylc 65 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝑊𝐵) We 𝐶)
51 weinxp 5770 . . . . . . . . . . 11 ((𝑊𝐵) We 𝐶 ↔ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) We 𝐶)
5250, 51sylib 218 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝑊𝐵) ∩ (𝐶 × 𝐶)) We 𝐶)
53 fvex 6919 . . . . . . . . . . . . . 14 (𝑊𝐵) ∈ V
5453cnvex 7947 . . . . . . . . . . . . 13 (𝑊𝐵) ∈ V
5554imaex 7936 . . . . . . . . . . . 12 ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) ∈ V
5620, 55eqeltri 2837 . . . . . . . . . . 11 𝐶 ∈ V
5753inex1 5317 . . . . . . . . . . 11 ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ∈ V
58 simpl 482 . . . . . . . . . . . . 13 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → 𝑥 = 𝐶)
5958sseq1d 4015 . . . . . . . . . . . 12 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → (𝑥𝐴𝐶𝐴))
60 simpr 484 . . . . . . . . . . . . 13 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → 𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶)))
6158sqxpeqd 5717 . . . . . . . . . . . . 13 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → (𝑥 × 𝑥) = (𝐶 × 𝐶))
6260, 61sseq12d 4017 . . . . . . . . . . . 12 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶)))
6360, 58weeq12d 5674 . . . . . . . . . . . 12 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → (𝑟 We 𝑥 ↔ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) We 𝐶))
6459, 62, 633anbi123d 1438 . . . . . . . . . . 11 ((𝑥 = 𝐶𝑟 = ((𝑊𝐵) ∩ (𝐶 × 𝐶))) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝐶𝐴 ∧ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶) ∧ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) We 𝐶)))
6556, 57, 64opelopaba 5541 . . . . . . . . . 10 (⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝐶𝐴 ∧ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶) ∧ ((𝑊𝐵) ∩ (𝐶 × 𝐶)) We 𝐶))
6644, 46, 52, 65syl3anbrc 1344 . . . . . . . . 9 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)})
6766, 12eleqtrrdi 2852 . . . . . . . 8 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ ∈ 𝑂)
685, 43ssexd 5324 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐵 ∈ V)
6953a1i 11 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝑊𝐵) ∈ V)
70 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → 𝑥 = 𝐵)
7170sseq1d 4015 . . . . . . . . . . . . 13 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → (𝑥𝐴𝐵𝐴))
72 simpr 484 . . . . . . . . . . . . . 14 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → 𝑟 = (𝑊𝐵))
7370sqxpeqd 5717 . . . . . . . . . . . . . 14 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → (𝑥 × 𝑥) = (𝐵 × 𝐵))
7472, 73sseq12d 4017 . . . . . . . . . . . . 13 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ (𝑊𝐵) ⊆ (𝐵 × 𝐵)))
7572, 70weeq12d 5674 . . . . . . . . . . . . 13 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → (𝑟 We 𝑥 ↔ (𝑊𝐵) We 𝐵))
7671, 74, 753anbi123d 1438 . . . . . . . . . . . 12 ((𝑥 = 𝐵𝑟 = (𝑊𝐵)) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵) ∧ (𝑊𝐵) We 𝐵)))
7776opelopabga 5538 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ (𝑊𝐵) ∈ V) → (⟨𝐵, (𝑊𝐵)⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵) ∧ (𝑊𝐵) We 𝐵)))
7868, 69, 77syl2anc 584 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (⟨𝐵, (𝑊𝐵)⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵) ∧ (𝑊𝐵) We 𝐵)))
7943, 36, 48, 78mpbir3and 1343 . . . . . . . . 9 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ⟨𝐵, (𝑊𝐵)⟩ ∈ {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)})
8079, 12eleqtrrdi 2852 . . . . . . . 8 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ⟨𝐵, (𝑊𝐵)⟩ ∈ 𝑂)
81 f1fveq 7282 . . . . . . . 8 ((𝐹:𝑂1-1𝐴 ∧ (⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ ∈ 𝑂 ∧ ⟨𝐵, (𝑊𝐵)⟩ ∈ 𝑂)) → ((𝐹‘⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩) = (𝐹‘⟨𝐵, (𝑊𝐵)⟩) ↔ ⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ = ⟨𝐵, (𝑊𝐵)⟩))
8231, 67, 80, 81syl12anc 837 . . . . . . 7 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝐹‘⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩) = (𝐹‘⟨𝐵, (𝑊𝐵)⟩) ↔ ⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ = ⟨𝐵, (𝑊𝐵)⟩))
8330, 82mpbid 232 . . . . . 6 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ = ⟨𝐵, (𝑊𝐵)⟩)
8456, 57opth1 5480 . . . . . 6 (⟨𝐶, ((𝑊𝐵) ∩ (𝐶 × 𝐶))⟩ = ⟨𝐵, (𝑊𝐵)⟩ → 𝐶 = 𝐵)
8583, 84syl 17 . . . . 5 ((𝐴𝑉𝐹:𝑂1-1𝐴) → 𝐶 = 𝐵)
8619, 85eleqtrrd 2844 . . . 4 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝐹(𝑊𝐵)) ∈ 𝐶)
8786, 20eleqtrdi 2851 . . 3 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝐹(𝑊𝐵)) ∈ ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}))
88 ovex 7464 . . . . 5 (𝐵𝐹(𝑊𝐵)) ∈ V
8988eliniseg 6112 . . . 4 ((𝐵𝐹(𝑊𝐵)) ∈ 𝐵 → ((𝐵𝐹(𝑊𝐵)) ∈ ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) ↔ (𝐵𝐹(𝑊𝐵))(𝑊𝐵)(𝐵𝐹(𝑊𝐵))))
9019, 89syl 17 . . 3 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ((𝐵𝐹(𝑊𝐵)) ∈ ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))}) ↔ (𝐵𝐹(𝑊𝐵))(𝑊𝐵)(𝐵𝐹(𝑊𝐵))))
9187, 90mpbid 232 . 2 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝐵𝐹(𝑊𝐵))(𝑊𝐵)(𝐵𝐹(𝑊𝐵)))
92 weso 5676 . . . 4 ((𝑊𝐵) We 𝐵 → (𝑊𝐵) Or 𝐵)
9348, 92syl 17 . . 3 ((𝐴𝑉𝐹:𝑂1-1𝐴) → (𝑊𝐵) Or 𝐵)
94 sonr 5616 . . 3 (((𝑊𝐵) Or 𝐵 ∧ (𝐵𝐹(𝑊𝐵)) ∈ 𝐵) → ¬ (𝐵𝐹(𝑊𝐵))(𝑊𝐵)(𝐵𝐹(𝑊𝐵)))
9593, 19, 94syl2anc 584 . 2 ((𝐴𝑉𝐹:𝑂1-1𝐴) → ¬ (𝐵𝐹(𝑊𝐵))(𝑊𝐵)(𝐵𝐹(𝑊𝐵)))
9691, 95pm2.65da 817 1 (𝐴𝑉 → ¬ 𝐹:𝑂1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  [wsbc 3788  cin 3950  wss 3951  {csn 4626  cop 4632   cuni 4907   class class class wbr 5143  {copab 5205   Or wor 5591   We wwe 5636   × cxp 5683  ccnv 5684  dom cdm 5685  cima 5688  wf 6557  1-1wf1 6558  cfv 6561  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-oi 9550
This theorem is referenced by:  canthwe  10691
  Copyright terms: Public domain W3C validator