Proof of Theorem canthwelem
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . 8
⊢ 𝐵 = 𝐵 |
2 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑊‘𝐵) = (𝑊‘𝐵) |
3 | 1, 2 | pm3.2i 470 |
. . . . . . 7
⊢ (𝐵 = 𝐵 ∧ (𝑊‘𝐵) = (𝑊‘𝐵)) |
4 | | canthwe.2 |
. . . . . . . 8
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
5 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 𝐴 ∈ 𝑉) |
6 | | df-ov 7258 |
. . . . . . . . 9
⊢ (𝑥𝐹𝑟) = (𝐹‘〈𝑥, 𝑟〉) |
7 | | f1f 6654 |
. . . . . . . . . . 11
⊢ (𝐹:𝑂–1-1→𝐴 → 𝐹:𝑂⟶𝐴) |
8 | 7 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → 𝐹:𝑂⟶𝐴) |
9 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) |
10 | | opabidw 5431 |
. . . . . . . . . . . 12
⊢
(〈𝑥, 𝑟〉 ∈ {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) |
11 | 9, 10 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → 〈𝑥, 𝑟〉 ∈ {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}) |
12 | | canthwe.1 |
. . . . . . . . . . 11
⊢ 𝑂 = {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} |
13 | 11, 12 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → 〈𝑥, 𝑟〉 ∈ 𝑂) |
14 | 8, 13 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝐹‘〈𝑥, 𝑟〉) ∈ 𝐴) |
15 | 6, 14 | eqeltrid 2843 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
16 | | canthwe.3 |
. . . . . . . 8
⊢ 𝐵 = ∪
dom 𝑊 |
17 | 4, 5, 15, 16 | fpwwe2 10330 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → ((𝐵𝑊(𝑊‘𝐵) ∧ (𝐵𝐹(𝑊‘𝐵)) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊‘𝐵) = (𝑊‘𝐵)))) |
18 | 3, 17 | mpbiri 257 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝐵𝑊(𝑊‘𝐵) ∧ (𝐵𝐹(𝑊‘𝐵)) ∈ 𝐵)) |
19 | 18 | simprd 495 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝐵𝐹(𝑊‘𝐵)) ∈ 𝐵) |
20 | | canthwe.4 |
. . . . . . . . . 10
⊢ 𝐶 = (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) |
21 | 20, 20 | xpeq12i 5608 |
. . . . . . . . . . 11
⊢ (𝐶 × 𝐶) = ((◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) × (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))})) |
22 | 21 | ineq2i 4140 |
. . . . . . . . . 10
⊢ ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) = ((𝑊‘𝐵) ∩ ((◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) × (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}))) |
23 | 20, 22 | oveq12i 7267 |
. . . . . . . . 9
⊢ (𝐶𝐹((𝑊‘𝐵) ∩ (𝐶 × 𝐶))) = ((◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))})𝐹((𝑊‘𝐵) ∩ ((◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) × (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))})))) |
24 | 18 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 𝐵𝑊(𝑊‘𝐵)) |
25 | 4, 5, 24 | fpwwe2lem3 10320 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) ∧ (𝐵𝐹(𝑊‘𝐵)) ∈ 𝐵) → ((◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))})𝐹((𝑊‘𝐵) ∩ ((◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) × (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))})))) = (𝐵𝐹(𝑊‘𝐵))) |
26 | 19, 25 | mpdan 683 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → ((◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))})𝐹((𝑊‘𝐵) ∩ ((◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) × (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))})))) = (𝐵𝐹(𝑊‘𝐵))) |
27 | 23, 26 | eqtrid 2790 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝐶𝐹((𝑊‘𝐵) ∩ (𝐶 × 𝐶))) = (𝐵𝐹(𝑊‘𝐵))) |
28 | | df-ov 7258 |
. . . . . . . 8
⊢ (𝐶𝐹((𝑊‘𝐵) ∩ (𝐶 × 𝐶))) = (𝐹‘〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉) |
29 | | df-ov 7258 |
. . . . . . . 8
⊢ (𝐵𝐹(𝑊‘𝐵)) = (𝐹‘〈𝐵, (𝑊‘𝐵)〉) |
30 | 27, 28, 29 | 3eqtr3g 2802 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝐹‘〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉) = (𝐹‘〈𝐵, (𝑊‘𝐵)〉)) |
31 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 𝐹:𝑂–1-1→𝐴) |
32 | | cnvimass 5978 |
. . . . . . . . . . . . 13
⊢ (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) ⊆ dom (𝑊‘𝐵) |
33 | 4, 5 | fpwwe2lem2 10319 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝐵𝑊(𝑊‘𝐵) ↔ ((𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊‘𝐵) We 𝐵 ∧ ∀𝑦 ∈ 𝐵 [(◡(𝑊‘𝐵) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝐵) ∩ (𝑢 × 𝑢))) = 𝑦)))) |
34 | 24, 33 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → ((𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊‘𝐵) We 𝐵 ∧ ∀𝑦 ∈ 𝐵 [(◡(𝑊‘𝐵) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝐵) ∩ (𝑢 × 𝑢))) = 𝑦))) |
35 | 34 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵))) |
36 | 35 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝑊‘𝐵) ⊆ (𝐵 × 𝐵)) |
37 | | dmss 5800 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊‘𝐵) ⊆ (𝐵 × 𝐵) → dom (𝑊‘𝐵) ⊆ dom (𝐵 × 𝐵)) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → dom (𝑊‘𝐵) ⊆ dom (𝐵 × 𝐵)) |
39 | | dmxpss 6063 |
. . . . . . . . . . . . . 14
⊢ dom
(𝐵 × 𝐵) ⊆ 𝐵 |
40 | 38, 39 | sstrdi 3929 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → dom (𝑊‘𝐵) ⊆ 𝐵) |
41 | 32, 40 | sstrid 3928 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) ⊆ 𝐵) |
42 | 20, 41 | eqsstrid 3965 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 𝐶 ⊆ 𝐵) |
43 | 35 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 𝐵 ⊆ 𝐴) |
44 | 42, 43 | sstrd 3927 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 𝐶 ⊆ 𝐴) |
45 | | inss2 4160 |
. . . . . . . . . . 11
⊢ ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶) |
46 | 45 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶)) |
47 | 34 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → ((𝑊‘𝐵) We 𝐵 ∧ ∀𝑦 ∈ 𝐵 [(◡(𝑊‘𝐵) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝐵) ∩ (𝑢 × 𝑢))) = 𝑦)) |
48 | 47 | simpld 494 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝑊‘𝐵) We 𝐵) |
49 | | wess 5567 |
. . . . . . . . . . . 12
⊢ (𝐶 ⊆ 𝐵 → ((𝑊‘𝐵) We 𝐵 → (𝑊‘𝐵) We 𝐶)) |
50 | 42, 48, 49 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝑊‘𝐵) We 𝐶) |
51 | | weinxp 5662 |
. . . . . . . . . . 11
⊢ ((𝑊‘𝐵) We 𝐶 ↔ ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) We 𝐶) |
52 | 50, 51 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) We 𝐶) |
53 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢ (𝑊‘𝐵) ∈ V |
54 | 53 | cnvex 7746 |
. . . . . . . . . . . . 13
⊢ ◡(𝑊‘𝐵) ∈ V |
55 | 54 | imaex 7737 |
. . . . . . . . . . . 12
⊢ (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) ∈ V |
56 | 20, 55 | eqeltri 2835 |
. . . . . . . . . . 11
⊢ 𝐶 ∈ V |
57 | 53 | inex1 5236 |
. . . . . . . . . . 11
⊢ ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) ∈ V |
58 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐶 ∧ 𝑟 = ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))) → 𝑥 = 𝐶) |
59 | 58 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐶 ∧ 𝑟 = ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))) → (𝑥 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐴)) |
60 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐶 ∧ 𝑟 = ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))) → 𝑟 = ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))) |
61 | 58 | sqxpeqd 5612 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐶 ∧ 𝑟 = ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))) → (𝑥 × 𝑥) = (𝐶 × 𝐶)) |
62 | 60, 61 | sseq12d 3950 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐶 ∧ 𝑟 = ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶))) |
63 | | weeq2 5569 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐶 → (𝑟 We 𝑥 ↔ 𝑟 We 𝐶)) |
64 | | weeq1 5568 |
. . . . . . . . . . . . 13
⊢ (𝑟 = ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) → (𝑟 We 𝐶 ↔ ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) We 𝐶)) |
65 | 63, 64 | sylan9bb 509 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐶 ∧ 𝑟 = ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))) → (𝑟 We 𝑥 ↔ ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) We 𝐶)) |
66 | 59, 62, 65 | 3anbi123d 1434 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝐶 ∧ 𝑟 = ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))) → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝐶 ⊆ 𝐴 ∧ ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶) ∧ ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) We 𝐶))) |
67 | 56, 57, 66 | opelopaba 5442 |
. . . . . . . . . 10
⊢
(〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉 ∈ {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝐶 ⊆ 𝐴 ∧ ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) ⊆ (𝐶 × 𝐶) ∧ ((𝑊‘𝐵) ∩ (𝐶 × 𝐶)) We 𝐶)) |
68 | 44, 46, 52, 67 | syl3anbrc 1341 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉 ∈ {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}) |
69 | 68, 12 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉 ∈ 𝑂) |
70 | 5, 43 | ssexd 5243 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 𝐵 ∈ V) |
71 | 53 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝑊‘𝐵) ∈ V) |
72 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝐵 ∧ 𝑟 = (𝑊‘𝐵)) → 𝑥 = 𝐵) |
73 | 72 | sseq1d 3948 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐵 ∧ 𝑟 = (𝑊‘𝐵)) → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
74 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝐵 ∧ 𝑟 = (𝑊‘𝐵)) → 𝑟 = (𝑊‘𝐵)) |
75 | 72 | sqxpeqd 5612 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝐵 ∧ 𝑟 = (𝑊‘𝐵)) → (𝑥 × 𝑥) = (𝐵 × 𝐵)) |
76 | 74, 75 | sseq12d 3950 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐵 ∧ 𝑟 = (𝑊‘𝐵)) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵))) |
77 | | weeq2 5569 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐵 → (𝑟 We 𝑥 ↔ 𝑟 We 𝐵)) |
78 | | weeq1 5568 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑊‘𝐵) → (𝑟 We 𝐵 ↔ (𝑊‘𝐵) We 𝐵)) |
79 | 77, 78 | sylan9bb 509 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐵 ∧ 𝑟 = (𝑊‘𝐵)) → (𝑟 We 𝑥 ↔ (𝑊‘𝐵) We 𝐵)) |
80 | 73, 76, 79 | 3anbi123d 1434 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐵 ∧ 𝑟 = (𝑊‘𝐵)) → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵) ∧ (𝑊‘𝐵) We 𝐵))) |
81 | 80 | opelopabga 5439 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ V ∧ (𝑊‘𝐵) ∈ V) → (〈𝐵, (𝑊‘𝐵)〉 ∈ {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵) ∧ (𝑊‘𝐵) We 𝐵))) |
82 | 70, 71, 81 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (〈𝐵, (𝑊‘𝐵)〉 ∈ {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ↔ (𝐵 ⊆ 𝐴 ∧ (𝑊‘𝐵) ⊆ (𝐵 × 𝐵) ∧ (𝑊‘𝐵) We 𝐵))) |
83 | 43, 36, 48, 82 | mpbir3and 1340 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 〈𝐵, (𝑊‘𝐵)〉 ∈ {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}) |
84 | 83, 12 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 〈𝐵, (𝑊‘𝐵)〉 ∈ 𝑂) |
85 | | f1fveq 7116 |
. . . . . . . 8
⊢ ((𝐹:𝑂–1-1→𝐴 ∧ (〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉 ∈ 𝑂 ∧ 〈𝐵, (𝑊‘𝐵)〉 ∈ 𝑂)) → ((𝐹‘〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉) = (𝐹‘〈𝐵, (𝑊‘𝐵)〉) ↔ 〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉 = 〈𝐵, (𝑊‘𝐵)〉)) |
86 | 31, 69, 84, 85 | syl12anc 833 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → ((𝐹‘〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉) = (𝐹‘〈𝐵, (𝑊‘𝐵)〉) ↔ 〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉 = 〈𝐵, (𝑊‘𝐵)〉)) |
87 | 30, 86 | mpbid 231 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉 = 〈𝐵, (𝑊‘𝐵)〉) |
88 | 56, 57 | opth1 5384 |
. . . . . 6
⊢
(〈𝐶, ((𝑊‘𝐵) ∩ (𝐶 × 𝐶))〉 = 〈𝐵, (𝑊‘𝐵)〉 → 𝐶 = 𝐵) |
89 | 87, 88 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → 𝐶 = 𝐵) |
90 | 19, 89 | eleqtrrd 2842 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝐵𝐹(𝑊‘𝐵)) ∈ 𝐶) |
91 | 90, 20 | eleqtrdi 2849 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝐵𝐹(𝑊‘𝐵)) ∈ (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))})) |
92 | | ovex 7288 |
. . . . 5
⊢ (𝐵𝐹(𝑊‘𝐵)) ∈ V |
93 | 92 | eliniseg 5991 |
. . . 4
⊢ ((𝐵𝐹(𝑊‘𝐵)) ∈ 𝐵 → ((𝐵𝐹(𝑊‘𝐵)) ∈ (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) ↔ (𝐵𝐹(𝑊‘𝐵))(𝑊‘𝐵)(𝐵𝐹(𝑊‘𝐵)))) |
94 | 19, 93 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → ((𝐵𝐹(𝑊‘𝐵)) ∈ (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) ↔ (𝐵𝐹(𝑊‘𝐵))(𝑊‘𝐵)(𝐵𝐹(𝑊‘𝐵)))) |
95 | 91, 94 | mpbid 231 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝐵𝐹(𝑊‘𝐵))(𝑊‘𝐵)(𝐵𝐹(𝑊‘𝐵))) |
96 | | weso 5571 |
. . . 4
⊢ ((𝑊‘𝐵) We 𝐵 → (𝑊‘𝐵) Or 𝐵) |
97 | 48, 96 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → (𝑊‘𝐵) Or 𝐵) |
98 | | sonr 5517 |
. . 3
⊢ (((𝑊‘𝐵) Or 𝐵 ∧ (𝐵𝐹(𝑊‘𝐵)) ∈ 𝐵) → ¬ (𝐵𝐹(𝑊‘𝐵))(𝑊‘𝐵)(𝐵𝐹(𝑊‘𝐵))) |
99 | 97, 19, 98 | syl2anc 583 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝑂–1-1→𝐴) → ¬ (𝐵𝐹(𝑊‘𝐵))(𝑊‘𝐵)(𝐵𝐹(𝑊‘𝐵))) |
100 | 95, 99 | pm2.65da 813 |
1
⊢ (𝐴 ∈ 𝑉 → ¬ 𝐹:𝑂–1-1→𝐴) |