Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelopabb Structured version   Visualization version   GIF version

Theorem opelopabb 36327
Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023.)
Hypotheses
Ref Expression
opelopabb.xph (𝜑 → ∀𝑥𝜑)
opelopabb.yph (𝜑 → ∀𝑦𝜑)
opelopabb.xch (𝜑 → Ⅎ𝑥𝜒)
opelopabb.ych (𝜑 → Ⅎ𝑦𝜒)
opelopabb.is ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
opelopabb (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem opelopabb
StepHypRef Expression
1 elopab 5527 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
2 opelopabb.xph . . 3 (𝜑 → ∀𝑥𝜑)
3 opelopabb.yph . . 3 (𝜑 → ∀𝑦𝜑)
4 opelopabb.xch . . 3 (𝜑 → Ⅎ𝑥𝜒)
5 opelopabb.ych . . 3 (𝜑 → Ⅎ𝑦𝜒)
6 opelopabb.is . . 3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
72, 3, 4, 5, 6copsex2b 36325 . 2 (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)))
81, 7bitrid 283 1 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538   = wceq 1540  wex 1780  wnf 1784  wcel 2105  Vcvv 3473  cop 4634  {copab 5210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-opab 5211
This theorem is referenced by:  opelopabbv  36328
  Copyright terms: Public domain W3C validator