![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opelopabb | Structured version Visualization version GIF version |
Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023.) |
Ref | Expression |
---|---|
opelopabb.xph | ⊢ (𝜑 → ∀𝑥𝜑) |
opelopabb.yph | ⊢ (𝜑 → ∀𝑦𝜑) |
opelopabb.xch | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
opelopabb.ych | ⊢ (𝜑 → Ⅎ𝑦𝜒) |
opelopabb.is | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opelopabb | ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5523 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓)) | |
2 | opelopabb.xph | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | opelopabb.yph | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
4 | opelopabb.xch | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | opelopabb.ych | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜒) | |
6 | opelopabb.is | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
7 | 2, 3, 4, 5, 6 | copsex2b 36609 | . 2 ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
8 | 1, 7 | bitrid 283 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∃wex 1774 Ⅎwnf 1778 ∈ wcel 2099 Vcvv 3469 〈cop 4630 {copab 5204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5205 |
This theorem is referenced by: opelopabbv 36612 |
Copyright terms: Public domain | W3C validator |