![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opelopabb | Structured version Visualization version GIF version |
Description: Membership of an ordered pair in a class abstraction of ordered pairs, biconditional form. (Contributed by BJ, 17-Dec-2023.) |
Ref | Expression |
---|---|
opelopabb.xph | ⊢ (𝜑 → ∀𝑥𝜑) |
opelopabb.yph | ⊢ (𝜑 → ∀𝑦𝜑) |
opelopabb.xch | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
opelopabb.ych | ⊢ (𝜑 → Ⅎ𝑦𝜒) |
opelopabb.is | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opelopabb | ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5546 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓)) | |
2 | opelopabb.xph | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | opelopabb.yph | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
4 | opelopabb.xch | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | opelopabb.ych | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜒) | |
6 | opelopabb.is | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
7 | 2, 3, 4, 5, 6 | copsex2b 37106 | . 2 ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
8 | 1, 7 | bitrid 283 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 Ⅎwnf 1781 ∈ wcel 2108 Vcvv 3488 〈cop 4654 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 |
This theorem is referenced by: opelopabbv 37109 |
Copyright terms: Public domain | W3C validator |