Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wrdexb | Structured version Visualization version GIF version |
Description: The set of words over a set is a set, bidirectional version. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.) |
Ref | Expression |
---|---|
wrdexb | ⊢ (𝑆 ∈ V ↔ Word 𝑆 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdexg 13928 | . 2 ⊢ (𝑆 ∈ V → Word 𝑆 ∈ V) | |
2 | opex 5327 | . . . . . . . 8 ⊢ 〈0, 𝑠〉 ∈ V | |
3 | 2 | snid 4561 | . . . . . . 7 ⊢ 〈0, 𝑠〉 ∈ {〈0, 𝑠〉} |
4 | snopiswrd 13927 | . . . . . . 7 ⊢ (𝑠 ∈ 𝑆 → {〈0, 𝑠〉} ∈ Word 𝑆) | |
5 | elunii 4806 | . . . . . . 7 ⊢ ((〈0, 𝑠〉 ∈ {〈0, 𝑠〉} ∧ {〈0, 𝑠〉} ∈ Word 𝑆) → 〈0, 𝑠〉 ∈ ∪ Word 𝑆) | |
6 | 3, 4, 5 | sylancr 590 | . . . . . 6 ⊢ (𝑠 ∈ 𝑆 → 〈0, 𝑠〉 ∈ ∪ Word 𝑆) |
7 | c0ex 10678 | . . . . . . 7 ⊢ 0 ∈ V | |
8 | vex 3413 | . . . . . . 7 ⊢ 𝑠 ∈ V | |
9 | 7, 8 | opeluu 5333 | . . . . . 6 ⊢ (〈0, 𝑠〉 ∈ ∪ Word 𝑆 → (0 ∈ ∪ ∪ ∪ Word 𝑆 ∧ 𝑠 ∈ ∪ ∪ ∪ Word 𝑆)) |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝑠 ∈ 𝑆 → (0 ∈ ∪ ∪ ∪ Word 𝑆 ∧ 𝑠 ∈ ∪ ∪ ∪ Word 𝑆)) |
11 | 10 | simprd 499 | . . . 4 ⊢ (𝑠 ∈ 𝑆 → 𝑠 ∈ ∪ ∪ ∪ Word 𝑆) |
12 | 11 | ssriv 3898 | . . 3 ⊢ 𝑆 ⊆ ∪ ∪ ∪ Word 𝑆 |
13 | uniexg 7469 | . . . 4 ⊢ (Word 𝑆 ∈ V → ∪ Word 𝑆 ∈ V) | |
14 | uniexg 7469 | . . . 4 ⊢ (∪ Word 𝑆 ∈ V → ∪ ∪ Word 𝑆 ∈ V) | |
15 | uniexg 7469 | . . . 4 ⊢ (∪ ∪ Word 𝑆 ∈ V → ∪ ∪ ∪ Word 𝑆 ∈ V) | |
16 | 13, 14, 15 | 3syl 18 | . . 3 ⊢ (Word 𝑆 ∈ V → ∪ ∪ ∪ Word 𝑆 ∈ V) |
17 | ssexg 5196 | . . 3 ⊢ ((𝑆 ⊆ ∪ ∪ ∪ Word 𝑆 ∧ ∪ ∪ ∪ Word 𝑆 ∈ V) → 𝑆 ∈ V) | |
18 | 12, 16, 17 | sylancr 590 | . 2 ⊢ (Word 𝑆 ∈ V → 𝑆 ∈ V) |
19 | 1, 18 | impbii 212 | 1 ⊢ (𝑆 ∈ V ↔ Word 𝑆 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 {csn 4525 〈cop 4531 ∪ cuni 4801 0cc0 10580 Word cword 13918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-fzo 13088 df-word 13919 |
This theorem is referenced by: efgrcl 18913 |
Copyright terms: Public domain | W3C validator |