MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdexb Structured version   Visualization version   GIF version

Theorem wrdexb 13876
Description: The set of words over a set is a set, bidirectional version. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
Assertion
Ref Expression
wrdexb (𝑆 ∈ V ↔ Word 𝑆 ∈ V)

Proof of Theorem wrdexb
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 wrdexg 13874 . 2 (𝑆 ∈ V → Word 𝑆 ∈ V)
2 opex 5358 . . . . . . . 8 ⟨0, 𝑠⟩ ∈ V
32snid 4603 . . . . . . 7 ⟨0, 𝑠⟩ ∈ {⟨0, 𝑠⟩}
4 snopiswrd 13873 . . . . . . 7 (𝑠𝑆 → {⟨0, 𝑠⟩} ∈ Word 𝑆)
5 elunii 4845 . . . . . . 7 ((⟨0, 𝑠⟩ ∈ {⟨0, 𝑠⟩} ∧ {⟨0, 𝑠⟩} ∈ Word 𝑆) → ⟨0, 𝑠⟩ ∈ Word 𝑆)
63, 4, 5sylancr 589 . . . . . 6 (𝑠𝑆 → ⟨0, 𝑠⟩ ∈ Word 𝑆)
7 c0ex 10637 . . . . . . 7 0 ∈ V
8 vex 3499 . . . . . . 7 𝑠 ∈ V
97, 8opeluu 5364 . . . . . 6 (⟨0, 𝑠⟩ ∈ Word 𝑆 → (0 ∈ Word 𝑆𝑠 Word 𝑆))
106, 9syl 17 . . . . 5 (𝑠𝑆 → (0 ∈ Word 𝑆𝑠 Word 𝑆))
1110simprd 498 . . . 4 (𝑠𝑆𝑠 Word 𝑆)
1211ssriv 3973 . . 3 𝑆 Word 𝑆
13 uniexg 7468 . . . 4 (Word 𝑆 ∈ V → Word 𝑆 ∈ V)
14 uniexg 7468 . . . 4 ( Word 𝑆 ∈ V → Word 𝑆 ∈ V)
15 uniexg 7468 . . . 4 ( Word 𝑆 ∈ V → Word 𝑆 ∈ V)
1613, 14, 153syl 18 . . 3 (Word 𝑆 ∈ V → Word 𝑆 ∈ V)
17 ssexg 5229 . . 3 ((𝑆 Word 𝑆 Word 𝑆 ∈ V) → 𝑆 ∈ V)
1812, 16, 17sylancr 589 . 2 (Word 𝑆 ∈ V → 𝑆 ∈ V)
191, 18impbii 211 1 (𝑆 ∈ V ↔ Word 𝑆 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wcel 2114  Vcvv 3496  wss 3938  {csn 4569  cop 4575   cuni 4840  0cc0 10539  Word cword 13864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-word 13865
This theorem is referenced by:  efgrcl  18843
  Copyright terms: Public domain W3C validator