| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem | Structured version Visualization version GIF version | ||
| Description: A and B are not equal. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
| zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
| Ref | Expression |
|---|---|
| zlmodzxzldeplem | ⊢ 𝐴 ≠ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5407 | . . . . 5 ⊢ 〈0, 3〉 ∈ V | |
| 2 | opex 5407 | . . . . 5 ⊢ 〈1, 6〉 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . 4 ⊢ (〈0, 3〉 ∈ V ∧ 〈1, 6〉 ∈ V) |
| 4 | opex 5407 | . . . . 5 ⊢ 〈0, 2〉 ∈ V | |
| 5 | opex 5407 | . . . . 5 ⊢ 〈1, 4〉 ∈ V | |
| 6 | 4, 5 | pm3.2i 470 | . . . 4 ⊢ (〈0, 2〉 ∈ V ∧ 〈1, 4〉 ∈ V) |
| 7 | 3, 6 | pm3.2i 470 | . . 3 ⊢ ((〈0, 3〉 ∈ V ∧ 〈1, 6〉 ∈ V) ∧ (〈0, 2〉 ∈ V ∧ 〈1, 4〉 ∈ V)) |
| 8 | 2re 12202 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 9 | 2lt3 12295 | . . . . . . . 8 ⊢ 2 < 3 | |
| 10 | 8, 9 | gtneii 11228 | . . . . . . 7 ⊢ 3 ≠ 2 |
| 11 | 10 | olci 866 | . . . . . 6 ⊢ (0 ≠ 0 ∨ 3 ≠ 2) |
| 12 | c0ex 11109 | . . . . . . 7 ⊢ 0 ∈ V | |
| 13 | 3ex 12210 | . . . . . . 7 ⊢ 3 ∈ V | |
| 14 | 12, 13 | opthne 5425 | . . . . . 6 ⊢ (〈0, 3〉 ≠ 〈0, 2〉 ↔ (0 ≠ 0 ∨ 3 ≠ 2)) |
| 15 | 11, 14 | mpbir 231 | . . . . 5 ⊢ 〈0, 3〉 ≠ 〈0, 2〉 |
| 16 | 0ne1 12199 | . . . . . . 7 ⊢ 0 ≠ 1 | |
| 17 | 16 | orci 865 | . . . . . 6 ⊢ (0 ≠ 1 ∨ 3 ≠ 4) |
| 18 | 12, 13 | opthne 5425 | . . . . . 6 ⊢ (〈0, 3〉 ≠ 〈1, 4〉 ↔ (0 ≠ 1 ∨ 3 ≠ 4)) |
| 19 | 17, 18 | mpbir 231 | . . . . 5 ⊢ 〈0, 3〉 ≠ 〈1, 4〉 |
| 20 | 15, 19 | pm3.2i 470 | . . . 4 ⊢ (〈0, 3〉 ≠ 〈0, 2〉 ∧ 〈0, 3〉 ≠ 〈1, 4〉) |
| 21 | 20 | orci 865 | . . 3 ⊢ ((〈0, 3〉 ≠ 〈0, 2〉 ∧ 〈0, 3〉 ≠ 〈1, 4〉) ∨ (〈1, 6〉 ≠ 〈0, 2〉 ∧ 〈1, 6〉 ≠ 〈1, 4〉)) |
| 22 | prneimg 4805 | . . 3 ⊢ (((〈0, 3〉 ∈ V ∧ 〈1, 6〉 ∈ V) ∧ (〈0, 2〉 ∈ V ∧ 〈1, 4〉 ∈ V)) → (((〈0, 3〉 ≠ 〈0, 2〉 ∧ 〈0, 3〉 ≠ 〈1, 4〉) ∨ (〈1, 6〉 ≠ 〈0, 2〉 ∧ 〈1, 6〉 ≠ 〈1, 4〉)) → {〈0, 3〉, 〈1, 6〉} ≠ {〈0, 2〉, 〈1, 4〉})) | |
| 23 | 7, 21, 22 | mp2 9 | . 2 ⊢ {〈0, 3〉, 〈1, 6〉} ≠ {〈0, 2〉, 〈1, 4〉} |
| 24 | zlmodzxzldep.a | . . 3 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
| 25 | zlmodzxzldep.b | . . 3 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
| 26 | 24, 25 | neeq12i 2991 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ {〈0, 3〉, 〈1, 6〉} ≠ {〈0, 2〉, 〈1, 4〉}) |
| 27 | 23, 26 | mpbir 231 | 1 ⊢ 𝐴 ≠ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 {cpr 4579 〈cop 4583 (class class class)co 7349 0cc0 11009 1c1 11010 2c2 12183 3c3 12184 4c4 12185 6c6 12187 ℤringczring 21353 freeLMod cfrlm 21653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-2 12191 df-3 12192 |
| This theorem is referenced by: zlmodzxzldeplem1 48505 zlmodzxzldeplem3 48507 zlmodzxzldeplem4 48508 ldepsnlinc 48513 |
| Copyright terms: Public domain | W3C validator |