![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem | Structured version Visualization version GIF version |
Description: A and B are not equal. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
Ref | Expression |
---|---|
zlmodzxzldeplem | ⊢ 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5484 | . . . . 5 ⊢ 〈0, 3〉 ∈ V | |
2 | opex 5484 | . . . . 5 ⊢ 〈1, 6〉 ∈ V | |
3 | 1, 2 | pm3.2i 470 | . . . 4 ⊢ (〈0, 3〉 ∈ V ∧ 〈1, 6〉 ∈ V) |
4 | opex 5484 | . . . . 5 ⊢ 〈0, 2〉 ∈ V | |
5 | opex 5484 | . . . . 5 ⊢ 〈1, 4〉 ∈ V | |
6 | 4, 5 | pm3.2i 470 | . . . 4 ⊢ (〈0, 2〉 ∈ V ∧ 〈1, 4〉 ∈ V) |
7 | 3, 6 | pm3.2i 470 | . . 3 ⊢ ((〈0, 3〉 ∈ V ∧ 〈1, 6〉 ∈ V) ∧ (〈0, 2〉 ∈ V ∧ 〈1, 4〉 ∈ V)) |
8 | 2re 12367 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
9 | 2lt3 12465 | . . . . . . . 8 ⊢ 2 < 3 | |
10 | 8, 9 | gtneii 11402 | . . . . . . 7 ⊢ 3 ≠ 2 |
11 | 10 | olci 865 | . . . . . 6 ⊢ (0 ≠ 0 ∨ 3 ≠ 2) |
12 | c0ex 11284 | . . . . . . 7 ⊢ 0 ∈ V | |
13 | 3ex 12375 | . . . . . . 7 ⊢ 3 ∈ V | |
14 | 12, 13 | opthne 5502 | . . . . . 6 ⊢ (〈0, 3〉 ≠ 〈0, 2〉 ↔ (0 ≠ 0 ∨ 3 ≠ 2)) |
15 | 11, 14 | mpbir 231 | . . . . 5 ⊢ 〈0, 3〉 ≠ 〈0, 2〉 |
16 | 0ne1 12364 | . . . . . . 7 ⊢ 0 ≠ 1 | |
17 | 16 | orci 864 | . . . . . 6 ⊢ (0 ≠ 1 ∨ 3 ≠ 4) |
18 | 12, 13 | opthne 5502 | . . . . . 6 ⊢ (〈0, 3〉 ≠ 〈1, 4〉 ↔ (0 ≠ 1 ∨ 3 ≠ 4)) |
19 | 17, 18 | mpbir 231 | . . . . 5 ⊢ 〈0, 3〉 ≠ 〈1, 4〉 |
20 | 15, 19 | pm3.2i 470 | . . . 4 ⊢ (〈0, 3〉 ≠ 〈0, 2〉 ∧ 〈0, 3〉 ≠ 〈1, 4〉) |
21 | 20 | orci 864 | . . 3 ⊢ ((〈0, 3〉 ≠ 〈0, 2〉 ∧ 〈0, 3〉 ≠ 〈1, 4〉) ∨ (〈1, 6〉 ≠ 〈0, 2〉 ∧ 〈1, 6〉 ≠ 〈1, 4〉)) |
22 | prneimg 4879 | . . 3 ⊢ (((〈0, 3〉 ∈ V ∧ 〈1, 6〉 ∈ V) ∧ (〈0, 2〉 ∈ V ∧ 〈1, 4〉 ∈ V)) → (((〈0, 3〉 ≠ 〈0, 2〉 ∧ 〈0, 3〉 ≠ 〈1, 4〉) ∨ (〈1, 6〉 ≠ 〈0, 2〉 ∧ 〈1, 6〉 ≠ 〈1, 4〉)) → {〈0, 3〉, 〈1, 6〉} ≠ {〈0, 2〉, 〈1, 4〉})) | |
23 | 7, 21, 22 | mp2 9 | . 2 ⊢ {〈0, 3〉, 〈1, 6〉} ≠ {〈0, 2〉, 〈1, 4〉} |
24 | zlmodzxzldep.a | . . 3 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
25 | zlmodzxzldep.b | . . 3 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
26 | 24, 25 | neeq12i 3013 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ {〈0, 3〉, 〈1, 6〉} ≠ {〈0, 2〉, 〈1, 4〉}) |
27 | 23, 26 | mpbir 231 | 1 ⊢ 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 {cpr 4650 〈cop 4654 (class class class)co 7448 0cc0 11184 1c1 11185 2c2 12348 3c3 12349 4c4 12350 6c6 12352 ℤringczring 21480 freeLMod cfrlm 21789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-2 12356 df-3 12357 |
This theorem is referenced by: zlmodzxzldeplem1 48229 zlmodzxzldeplem3 48231 zlmodzxzldeplem4 48232 ldepsnlinc 48237 |
Copyright terms: Public domain | W3C validator |