Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem | Structured version Visualization version GIF version |
Description: A and B are not equal. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
Ref | Expression |
---|---|
zlmodzxzldeplem | ⊢ 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5373 | . . . . 5 ⊢ 〈0, 3〉 ∈ V | |
2 | opex 5373 | . . . . 5 ⊢ 〈1, 6〉 ∈ V | |
3 | 1, 2 | pm3.2i 470 | . . . 4 ⊢ (〈0, 3〉 ∈ V ∧ 〈1, 6〉 ∈ V) |
4 | opex 5373 | . . . . 5 ⊢ 〈0, 2〉 ∈ V | |
5 | opex 5373 | . . . . 5 ⊢ 〈1, 4〉 ∈ V | |
6 | 4, 5 | pm3.2i 470 | . . . 4 ⊢ (〈0, 2〉 ∈ V ∧ 〈1, 4〉 ∈ V) |
7 | 3, 6 | pm3.2i 470 | . . 3 ⊢ ((〈0, 3〉 ∈ V ∧ 〈1, 6〉 ∈ V) ∧ (〈0, 2〉 ∈ V ∧ 〈1, 4〉 ∈ V)) |
8 | 2re 11977 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
9 | 2lt3 12075 | . . . . . . . 8 ⊢ 2 < 3 | |
10 | 8, 9 | gtneii 11017 | . . . . . . 7 ⊢ 3 ≠ 2 |
11 | 10 | olci 862 | . . . . . 6 ⊢ (0 ≠ 0 ∨ 3 ≠ 2) |
12 | c0ex 10900 | . . . . . . 7 ⊢ 0 ∈ V | |
13 | 3ex 11985 | . . . . . . 7 ⊢ 3 ∈ V | |
14 | 12, 13 | opthne 5391 | . . . . . 6 ⊢ (〈0, 3〉 ≠ 〈0, 2〉 ↔ (0 ≠ 0 ∨ 3 ≠ 2)) |
15 | 11, 14 | mpbir 230 | . . . . 5 ⊢ 〈0, 3〉 ≠ 〈0, 2〉 |
16 | 0ne1 11974 | . . . . . . 7 ⊢ 0 ≠ 1 | |
17 | 16 | orci 861 | . . . . . 6 ⊢ (0 ≠ 1 ∨ 3 ≠ 4) |
18 | 12, 13 | opthne 5391 | . . . . . 6 ⊢ (〈0, 3〉 ≠ 〈1, 4〉 ↔ (0 ≠ 1 ∨ 3 ≠ 4)) |
19 | 17, 18 | mpbir 230 | . . . . 5 ⊢ 〈0, 3〉 ≠ 〈1, 4〉 |
20 | 15, 19 | pm3.2i 470 | . . . 4 ⊢ (〈0, 3〉 ≠ 〈0, 2〉 ∧ 〈0, 3〉 ≠ 〈1, 4〉) |
21 | 20 | orci 861 | . . 3 ⊢ ((〈0, 3〉 ≠ 〈0, 2〉 ∧ 〈0, 3〉 ≠ 〈1, 4〉) ∨ (〈1, 6〉 ≠ 〈0, 2〉 ∧ 〈1, 6〉 ≠ 〈1, 4〉)) |
22 | prneimg 4782 | . . 3 ⊢ (((〈0, 3〉 ∈ V ∧ 〈1, 6〉 ∈ V) ∧ (〈0, 2〉 ∈ V ∧ 〈1, 4〉 ∈ V)) → (((〈0, 3〉 ≠ 〈0, 2〉 ∧ 〈0, 3〉 ≠ 〈1, 4〉) ∨ (〈1, 6〉 ≠ 〈0, 2〉 ∧ 〈1, 6〉 ≠ 〈1, 4〉)) → {〈0, 3〉, 〈1, 6〉} ≠ {〈0, 2〉, 〈1, 4〉})) | |
23 | 7, 21, 22 | mp2 9 | . 2 ⊢ {〈0, 3〉, 〈1, 6〉} ≠ {〈0, 2〉, 〈1, 4〉} |
24 | zlmodzxzldep.a | . . 3 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
25 | zlmodzxzldep.b | . . 3 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
26 | 24, 25 | neeq12i 3009 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ {〈0, 3〉, 〈1, 6〉} ≠ {〈0, 2〉, 〈1, 4〉}) |
27 | 23, 26 | mpbir 230 | 1 ⊢ 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 {cpr 4560 〈cop 4564 (class class class)co 7255 0cc0 10802 1c1 10803 2c2 11958 3c3 11959 4c4 11960 6c6 11962 ℤringzring 20582 freeLMod cfrlm 20863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-2 11966 df-3 11967 |
This theorem is referenced by: zlmodzxzldeplem1 45729 zlmodzxzldeplem3 45731 zlmodzxzldeplem4 45732 ldepsnlinc 45737 |
Copyright terms: Public domain | W3C validator |