MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleib Structured version   Visualization version   GIF version

Theorem m2detleib 20846
Description: Leibniz' Formula for 2x2-matrices. (Contributed by AV, 21-Dec-2018.) (Revised by AV, 26-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
m2detleib.n 𝑁 = {1, 2}
m2detleib.d 𝐷 = (𝑁 maDet 𝑅)
m2detleib.a 𝐴 = (𝑁 Mat 𝑅)
m2detleib.b 𝐵 = (Base‘𝐴)
m2detleib.m = (-g𝑅)
m2detleib.t · = (.r𝑅)
Assertion
Ref Expression
m2detleib ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))

Proof of Theorem m2detleib
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2detleib.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 m2detleib.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 m2detleib.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2778 . . . 4 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
5 eqid 2778 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2778 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
7 m2detleib.t . . . 4 · = (.r𝑅)
8 eqid 2778 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib1 20806 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))))
109adantl 475 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))))
11 eqid 2778 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 eqid 2778 . . 3 (+g𝑅) = (+g𝑅)
13 ringcmn 18972 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1413adantr 474 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ CMnd)
15 m2detleib.n . . . . . 6 𝑁 = {1, 2}
16 prfi 8525 . . . . . 6 {1, 2} ∈ Fin
1715, 16eqeltri 2855 . . . . 5 𝑁 ∈ Fin
18 eqid 2778 . . . . . 6 (SymGrp‘𝑁) = (SymGrp‘𝑁)
1918, 4symgbasfi 18193 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
2017, 19ax-mp 5 . . . 4 (Base‘(SymGrp‘𝑁)) ∈ Fin
2120a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) ∈ Fin)
22 simpl 476 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
2322adantr 474 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
244, 6, 5zrhpsgnelbas 20340 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
2517, 24mp3an2 1522 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
2625adantlr 705 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
27 simpr 479 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑘 ∈ (Base‘(SymGrp‘𝑁)))
28 simpr 479 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
2928adantr 474 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑀𝐵)
3015, 4, 2, 3, 8m2detleiblem2 20843 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
3123, 27, 29, 30syl3anc 1439 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
3211, 7ringcl 18952 . . . 4 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
3323, 26, 31, 32syl3anc 1439 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
34 opex 5166 . . . . . . . 8 ⟨1, 1⟩ ∈ V
35 opex 5166 . . . . . . . 8 ⟨2, 2⟩ ∈ V
3634, 35pm3.2i 464 . . . . . . 7 (⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V)
37 opex 5166 . . . . . . . 8 ⟨1, 2⟩ ∈ V
38 opex 5166 . . . . . . . 8 ⟨2, 1⟩ ∈ V
3937, 38pm3.2i 464 . . . . . . 7 (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)
4036, 39pm3.2i 464 . . . . . 6 ((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V))
41 1ne2 11594 . . . . . . . . . 10 1 ≠ 2
4241olci 855 . . . . . . . . 9 (1 ≠ 1 ∨ 1 ≠ 2)
43 1ex 10374 . . . . . . . . . 10 1 ∈ V
4443, 43opthne 5184 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨1, 2⟩ ↔ (1 ≠ 1 ∨ 1 ≠ 2))
4542, 44mpbir 223 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨1, 2⟩
4641orci 854 . . . . . . . . 9 (1 ≠ 2 ∨ 1 ≠ 1)
4743, 43opthne 5184 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨2, 1⟩ ↔ (1 ≠ 2 ∨ 1 ≠ 1))
4846, 47mpbir 223 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨2, 1⟩
4945, 48pm3.2i 464 . . . . . . 7 (⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩)
5049orci 854 . . . . . 6 ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))
5140, 50pm3.2i 464 . . . . 5 (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩)))
5251a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))))
53 prneimg 4618 . . . . 5 (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) → (((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩)) → {⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩}))
5453imp 397 . . . 4 ((((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))) → {⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩})
55 disjsn2 4479 . . . 4 ({⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩} → ({{⟨1, 1⟩, ⟨2, 2⟩}} ∩ {{⟨1, 2⟩, ⟨2, 1⟩}}) = ∅)
5652, 54, 553syl 18 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ({{⟨1, 1⟩, ⟨2, 2⟩}} ∩ {{⟨1, 2⟩, ⟨2, 1⟩}}) = ∅)
57 2nn 11452 . . . . . 6 2 ∈ ℕ
5818, 4, 15symg2bas 18205 . . . . . 6 ((1 ∈ V ∧ 2 ∈ ℕ) → (Base‘(SymGrp‘𝑁)) = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
5943, 57, 58mp2an 682 . . . . 5 (Base‘(SymGrp‘𝑁)) = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
60 df-pr 4401 . . . . 5 {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}})
6159, 60eqtri 2802 . . . 4 (Base‘(SymGrp‘𝑁)) = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}})
6261a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}}))
6311, 12, 14, 21, 33, 56, 62gsummptfidmsplit 18720 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))))
64 ringmnd 18947 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
6564adantr 474 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Mnd)
66 prex 5143 . . . . . 6 {⟨1, 1⟩, ⟨2, 2⟩} ∈ V
6766a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 1⟩, ⟨2, 2⟩} ∈ V)
6866prid1 4529 . . . . . . . . 9 {⟨1, 1⟩, ⟨2, 2⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
6968, 59eleqtrri 2858 . . . . . . . 8 {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))
7069a1i 11 . . . . . . 7 (𝑀𝐵 → {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁)))
714, 6, 5zrhpsgnelbas 20340 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7217, 71mp3an2 1522 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7370, 72sylan2 586 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7415, 4, 2, 3, 8m2detleiblem2 20843 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
7569, 74mp3an2 1522 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
7611, 7ringcl 18952 . . . . . 6 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
7722, 73, 75, 76syl3anc 1439 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
78 2fveq3 6453 . . . . . . 7 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})))
79 fveq1 6447 . . . . . . . . . 10 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑘𝑛) = ({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛))
8079oveq1d 6939 . . . . . . . . 9 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((𝑘𝑛)𝑀𝑛) = (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))
8180mpteq2dv 4982 . . . . . . . 8 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))
8281oveq2d 6940 . . . . . . 7 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))
8378, 82oveq12d 6942 . . . . . 6 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
8411, 83gsumsn 18744 . . . . 5 ((𝑅 ∈ Mnd ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
8565, 67, 77, 84syl3anc 1439 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
86 prex 5143 . . . . . 6 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
8786a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 2⟩, ⟨2, 1⟩} ∈ V)
8886prid2 4530 . . . . . . . . 9 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
8988, 59eleqtrri 2858 . . . . . . . 8 {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))
9089a1i 11 . . . . . . 7 (𝑀𝐵 → {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁)))
914, 6, 5zrhpsgnelbas 20340 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9217, 91mp3an2 1522 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9390, 92sylan2 586 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9415, 4, 2, 3, 8m2detleiblem2 20843 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
9589, 94mp3an2 1522 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
9611, 7ringcl 18952 . . . . . 6 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
9722, 93, 95, 96syl3anc 1439 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
98 2fveq3 6453 . . . . . . 7 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})))
99 fveq1 6447 . . . . . . . . . 10 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑘𝑛) = ({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛))
10099oveq1d 6939 . . . . . . . . 9 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((𝑘𝑛)𝑀𝑛) = (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))
101100mpteq2dv 4982 . . . . . . . 8 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))
102101oveq2d 6940 . . . . . . 7 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))
10398, 102oveq12d 6942 . . . . . 6 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10411, 103gsumsn 18744 . . . . 5 ((𝑅 ∈ Mnd ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10565, 87, 97, 104syl3anc 1439 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10685, 105oveq12d 6942 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))) = ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))(+g𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))))
107 eqidd 2779 . . . . . . 7 (𝑀𝐵 → {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩})
108 eqid 2778 . . . . . . . 8 (1r𝑅) = (1r𝑅)
10915, 4, 5, 6, 108m2detleiblem5 20840 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩}) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) = (1r𝑅))
110107, 109sylan2 586 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) = (1r𝑅))
111 eqidd 2779 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩})
1128, 7mgpplusg 18884 . . . . . . . 8 · = (+g‘(mulGrp‘𝑅))
11315, 4, 2, 3, 8, 112m2detleiblem3 20844 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
11422, 111, 28, 113syl3anc 1439 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
115110, 114oveq12d 6942 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) = ((1r𝑅) · ((1𝑀1) · (2𝑀2))))
11643prid1 4529 . . . . . . . . . 10 1 ∈ {1, 2}
117116, 15eleqtrri 2858 . . . . . . . . 9 1 ∈ 𝑁
118117a1i 11 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ 𝑁)
1193eleq2i 2851 . . . . . . . . . 10 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
120119biimpi 208 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
121120adantl 475 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
1222, 11matecl 20639 . . . . . . . 8 ((1 ∈ 𝑁 ∧ 1 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (1𝑀1) ∈ (Base‘𝑅))
123118, 118, 121, 122syl3anc 1439 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (1𝑀1) ∈ (Base‘𝑅))
124 prid2g 4528 . . . . . . . . . . 11 (2 ∈ ℕ → 2 ∈ {1, 2})
12557, 124ax-mp 5 . . . . . . . . . 10 2 ∈ {1, 2}
126125, 15eleqtrri 2858 . . . . . . . . 9 2 ∈ 𝑁
127126a1i 11 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 2 ∈ 𝑁)
1282, 11matecl 20639 . . . . . . . 8 ((2 ∈ 𝑁 ∧ 2 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (2𝑀2) ∈ (Base‘𝑅))
129127, 127, 121, 128syl3anc 1439 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (2𝑀2) ∈ (Base‘𝑅))
13011, 7ringcl 18952 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1𝑀1) ∈ (Base‘𝑅) ∧ (2𝑀2) ∈ (Base‘𝑅)) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅))
13122, 123, 129, 130syl3anc 1439 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅))
13211, 7, 108ringlidm 18962 . . . . . 6 ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅)) → ((1r𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2)))
133131, 132syldan 585 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((1r𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2)))
134115, 133eqtrd 2814 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) = ((1𝑀1) · (2𝑀2)))
135 eqidd 2779 . . . . . 6 (𝑀𝐵 → {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩})
136 eqid 2778 . . . . . . 7 (invg𝑅) = (invg𝑅)
13715, 4, 5, 6, 108, 136m2detleiblem6 20841 . . . . . 6 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩}) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) = ((invg𝑅)‘(1r𝑅)))
138135, 137sylan2 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) = ((invg𝑅)‘(1r𝑅)))
139 eqidd 2779 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩})
14015, 4, 2, 3, 8, 112m2detleiblem4 20845 . . . . . 6 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
14122, 139, 28, 140syl3anc 1439 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
142138, 141oveq12d 6942 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) = (((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2))))
143134, 142oveq12d 6942 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))(+g𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))) = (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))))
1442, 11matecl 20639 . . . . . 6 ((2 ∈ 𝑁 ∧ 1 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (2𝑀1) ∈ (Base‘𝑅))
145127, 118, 121, 144syl3anc 1439 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (2𝑀1) ∈ (Base‘𝑅))
1462, 11matecl 20639 . . . . . 6 ((1 ∈ 𝑁 ∧ 2 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (1𝑀2) ∈ (Base‘𝑅))
147118, 127, 121, 146syl3anc 1439 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (1𝑀2) ∈ (Base‘𝑅))
14811, 7ringcl 18952 . . . . 5 ((𝑅 ∈ Ring ∧ (2𝑀1) ∈ (Base‘𝑅) ∧ (1𝑀2) ∈ (Base‘𝑅)) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅))
14922, 145, 147, 148syl3anc 1439 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅))
150 m2detleib.m . . . . 5 = (-g𝑅)
15115, 4, 5, 6, 108, 136, 7, 150m2detleiblem7 20842 . . . 4 ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅) ∧ ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅)) → (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
15222, 131, 149, 151syl3anc 1439 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
153106, 143, 1523eqtrd 2818 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
15410, 63, 1533eqtrd 2818 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 836   = wceq 1601  wcel 2107  wne 2969  Vcvv 3398  cun 3790  cin 3791  c0 4141  {csn 4398  {cpr 4400  cop 4404  cmpt 4967  cfv 6137  (class class class)co 6924  Fincfn 8243  1c1 10275  cn 11378  2c2 11434  Basecbs 16259  +gcplusg 16342  .rcmulr 16343   Σg cgsu 16491  Mndcmnd 17684  invgcminusg 17814  -gcsg 17815  SymGrpcsymg 18184  pmSgncpsgn 18296  CMndccmn 18583  mulGrpcmgp 18880  1rcur 18892  Ringcrg 18938  ℤRHomczrh 20248   Mat cmat 20621   maDet cmdat 20799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-xor 1583  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-ot 4407  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-sup 8638  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-xnn0 11719  df-z 11733  df-dec 11850  df-uz 11997  df-rp 12142  df-fz 12648  df-fzo 12789  df-seq 13124  df-exp 13183  df-fac 13383  df-bc 13412  df-hash 13440  df-word 13604  df-lsw 13657  df-concat 13665  df-s1 13690  df-substr 13735  df-pfx 13784  df-splice 13891  df-reverse 13909  df-s2 14003  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-starv 16357  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-hom 16366  df-cco 16367  df-0g 16492  df-gsum 16493  df-prds 16498  df-pws 16500  df-mre 16636  df-mrc 16637  df-acs 16639  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-mhm 17725  df-submnd 17726  df-grp 17816  df-minusg 17817  df-sbg 17818  df-mulg 17932  df-subg 17979  df-ghm 18046  df-gim 18089  df-cntz 18137  df-oppg 18163  df-symg 18185  df-pmtr 18249  df-psgn 18298  df-cmn 18585  df-abl 18586  df-mgp 18881  df-ur 18893  df-ring 18940  df-cring 18941  df-rnghom 19108  df-subrg 19174  df-sra 19573  df-rgmod 19574  df-cnfld 20147  df-zring 20219  df-zrh 20252  df-dsmm 20479  df-frlm 20494  df-mat 20622  df-mdet 20800
This theorem is referenced by:  lmat22det  30490
  Copyright terms: Public domain W3C validator