MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleib Structured version   Visualization version   GIF version

Theorem m2detleib 22525
Description: Leibniz' Formula for 2x2-matrices. (Contributed by AV, 21-Dec-2018.) (Revised by AV, 26-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
m2detleib.n 𝑁 = {1, 2}
m2detleib.d 𝐷 = (𝑁 maDet 𝑅)
m2detleib.a 𝐴 = (𝑁 Mat 𝑅)
m2detleib.b 𝐵 = (Base‘𝐴)
m2detleib.m = (-g𝑅)
m2detleib.t · = (.r𝑅)
Assertion
Ref Expression
m2detleib ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))

Proof of Theorem m2detleib
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2detleib.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 m2detleib.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 m2detleib.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2730 . . . 4 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
5 eqid 2730 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2730 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
7 m2detleib.t . . . 4 · = (.r𝑅)
8 eqid 2730 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib1 22485 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))))
109adantl 481 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))))
11 eqid 2730 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 eqid 2730 . . 3 (+g𝑅) = (+g𝑅)
13 ringcmn 20198 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1413adantr 480 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ CMnd)
15 m2detleib.n . . . . . 6 𝑁 = {1, 2}
16 prfi 9281 . . . . . 6 {1, 2} ∈ Fin
1715, 16eqeltri 2825 . . . . 5 𝑁 ∈ Fin
18 eqid 2730 . . . . . 6 (SymGrp‘𝑁) = (SymGrp‘𝑁)
1918, 4symgbasfi 19316 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
2017, 19ax-mp 5 . . . 4 (Base‘(SymGrp‘𝑁)) ∈ Fin
2120a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) ∈ Fin)
22 simpl 482 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
2322adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
244, 6, 5zrhpsgnelbas 21510 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
2517, 24mp3an2 1451 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
2625adantlr 715 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
27 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑘 ∈ (Base‘(SymGrp‘𝑁)))
28 simpr 484 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
2928adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑀𝐵)
3015, 4, 2, 3, 8m2detleiblem2 22522 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
3123, 27, 29, 30syl3anc 1373 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
3211, 7ringcl 20166 . . . 4 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
3323, 26, 31, 32syl3anc 1373 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
34 opex 5427 . . . . . . . 8 ⟨1, 1⟩ ∈ V
35 opex 5427 . . . . . . . 8 ⟨2, 2⟩ ∈ V
3634, 35pm3.2i 470 . . . . . . 7 (⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V)
37 opex 5427 . . . . . . . 8 ⟨1, 2⟩ ∈ V
38 opex 5427 . . . . . . . 8 ⟨2, 1⟩ ∈ V
3937, 38pm3.2i 470 . . . . . . 7 (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)
4036, 39pm3.2i 470 . . . . . 6 ((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V))
41 1ne2 12396 . . . . . . . . . 10 1 ≠ 2
4241olci 866 . . . . . . . . 9 (1 ≠ 1 ∨ 1 ≠ 2)
43 1ex 11177 . . . . . . . . . 10 1 ∈ V
4443, 43opthne 5445 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨1, 2⟩ ↔ (1 ≠ 1 ∨ 1 ≠ 2))
4542, 44mpbir 231 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨1, 2⟩
4641orci 865 . . . . . . . . 9 (1 ≠ 2 ∨ 1 ≠ 1)
4743, 43opthne 5445 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨2, 1⟩ ↔ (1 ≠ 2 ∨ 1 ≠ 1))
4846, 47mpbir 231 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨2, 1⟩
4945, 48pm3.2i 470 . . . . . . 7 (⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩)
5049orci 865 . . . . . 6 ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))
5140, 50pm3.2i 470 . . . . 5 (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩)))
5251a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))))
53 prneimg 4821 . . . . 5 (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) → (((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩)) → {⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩}))
5453imp 406 . . . 4 ((((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))) → {⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩})
55 disjsn2 4679 . . . 4 ({⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩} → ({{⟨1, 1⟩, ⟨2, 2⟩}} ∩ {{⟨1, 2⟩, ⟨2, 1⟩}}) = ∅)
5652, 54, 553syl 18 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ({{⟨1, 1⟩, ⟨2, 2⟩}} ∩ {{⟨1, 2⟩, ⟨2, 1⟩}}) = ∅)
57 2nn 12266 . . . . . 6 2 ∈ ℕ
5818, 4, 15symg2bas 19330 . . . . . 6 ((1 ∈ V ∧ 2 ∈ ℕ) → (Base‘(SymGrp‘𝑁)) = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
5943, 57, 58mp2an 692 . . . . 5 (Base‘(SymGrp‘𝑁)) = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
60 df-pr 4595 . . . . 5 {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}})
6159, 60eqtri 2753 . . . 4 (Base‘(SymGrp‘𝑁)) = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}})
6261a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}}))
6311, 12, 14, 21, 33, 56, 62gsummptfidmsplit 19867 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))))
64 ringmnd 20159 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
6564adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Mnd)
66 prex 5395 . . . . . 6 {⟨1, 1⟩, ⟨2, 2⟩} ∈ V
6766a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 1⟩, ⟨2, 2⟩} ∈ V)
6866prid1 4729 . . . . . . . . 9 {⟨1, 1⟩, ⟨2, 2⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
6968, 59eleqtrri 2828 . . . . . . . 8 {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))
7069a1i 11 . . . . . . 7 (𝑀𝐵 → {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁)))
714, 6, 5zrhpsgnelbas 21510 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7217, 71mp3an2 1451 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7370, 72sylan2 593 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7415, 4, 2, 3, 8m2detleiblem2 22522 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
7569, 74mp3an2 1451 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
7611, 7ringcl 20166 . . . . . 6 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
7722, 73, 75, 76syl3anc 1373 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
78 2fveq3 6866 . . . . . . 7 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})))
79 fveq1 6860 . . . . . . . . . 10 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑘𝑛) = ({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛))
8079oveq1d 7405 . . . . . . . . 9 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((𝑘𝑛)𝑀𝑛) = (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))
8180mpteq2dv 5204 . . . . . . . 8 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))
8281oveq2d 7406 . . . . . . 7 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))
8378, 82oveq12d 7408 . . . . . 6 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
8411, 83gsumsn 19891 . . . . 5 ((𝑅 ∈ Mnd ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
8565, 67, 77, 84syl3anc 1373 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
86 prex 5395 . . . . . 6 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
8786a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 2⟩, ⟨2, 1⟩} ∈ V)
8886prid2 4730 . . . . . . . . 9 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
8988, 59eleqtrri 2828 . . . . . . . 8 {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))
9089a1i 11 . . . . . . 7 (𝑀𝐵 → {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁)))
914, 6, 5zrhpsgnelbas 21510 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9217, 91mp3an2 1451 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9390, 92sylan2 593 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9415, 4, 2, 3, 8m2detleiblem2 22522 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
9589, 94mp3an2 1451 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
9611, 7ringcl 20166 . . . . . 6 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
9722, 93, 95, 96syl3anc 1373 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
98 2fveq3 6866 . . . . . . 7 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})))
99 fveq1 6860 . . . . . . . . . 10 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑘𝑛) = ({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛))
10099oveq1d 7405 . . . . . . . . 9 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((𝑘𝑛)𝑀𝑛) = (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))
101100mpteq2dv 5204 . . . . . . . 8 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))
102101oveq2d 7406 . . . . . . 7 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))
10398, 102oveq12d 7408 . . . . . 6 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10411, 103gsumsn 19891 . . . . 5 ((𝑅 ∈ Mnd ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10565, 87, 97, 104syl3anc 1373 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10685, 105oveq12d 7408 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))) = ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))(+g𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))))
107 eqidd 2731 . . . . . . 7 (𝑀𝐵 → {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩})
108 eqid 2730 . . . . . . . 8 (1r𝑅) = (1r𝑅)
10915, 4, 5, 6, 108m2detleiblem5 22519 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩}) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) = (1r𝑅))
110107, 109sylan2 593 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) = (1r𝑅))
111 eqidd 2731 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩})
1128, 7mgpplusg 20060 . . . . . . . 8 · = (+g‘(mulGrp‘𝑅))
11315, 4, 2, 3, 8, 112m2detleiblem3 22523 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
11422, 111, 28, 113syl3anc 1373 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
115110, 114oveq12d 7408 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) = ((1r𝑅) · ((1𝑀1) · (2𝑀2))))
11643prid1 4729 . . . . . . . . . 10 1 ∈ {1, 2}
117116, 15eleqtrri 2828 . . . . . . . . 9 1 ∈ 𝑁
118117a1i 11 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ 𝑁)
1193eleq2i 2821 . . . . . . . . . 10 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
120119biimpi 216 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
121120adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
1222, 11matecl 22319 . . . . . . . 8 ((1 ∈ 𝑁 ∧ 1 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (1𝑀1) ∈ (Base‘𝑅))
123118, 118, 121, 122syl3anc 1373 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (1𝑀1) ∈ (Base‘𝑅))
124 prid2g 4728 . . . . . . . . . . 11 (2 ∈ ℕ → 2 ∈ {1, 2})
12557, 124ax-mp 5 . . . . . . . . . 10 2 ∈ {1, 2}
126125, 15eleqtrri 2828 . . . . . . . . 9 2 ∈ 𝑁
127126a1i 11 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 2 ∈ 𝑁)
1282, 11matecl 22319 . . . . . . . 8 ((2 ∈ 𝑁 ∧ 2 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (2𝑀2) ∈ (Base‘𝑅))
129127, 127, 121, 128syl3anc 1373 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (2𝑀2) ∈ (Base‘𝑅))
13011, 7ringcl 20166 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1𝑀1) ∈ (Base‘𝑅) ∧ (2𝑀2) ∈ (Base‘𝑅)) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅))
13122, 123, 129, 130syl3anc 1373 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅))
13211, 7, 108ringlidm 20185 . . . . . 6 ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅)) → ((1r𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2)))
133131, 132syldan 591 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((1r𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2)))
134115, 133eqtrd 2765 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) = ((1𝑀1) · (2𝑀2)))
135 eqidd 2731 . . . . . 6 (𝑀𝐵 → {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩})
136 eqid 2730 . . . . . . 7 (invg𝑅) = (invg𝑅)
13715, 4, 5, 6, 108, 136m2detleiblem6 22520 . . . . . 6 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩}) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) = ((invg𝑅)‘(1r𝑅)))
138135, 137sylan2 593 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) = ((invg𝑅)‘(1r𝑅)))
139 eqidd 2731 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩})
14015, 4, 2, 3, 8, 112m2detleiblem4 22524 . . . . . 6 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
14122, 139, 28, 140syl3anc 1373 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
142138, 141oveq12d 7408 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) = (((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2))))
143134, 142oveq12d 7408 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))(+g𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))) = (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))))
1442, 11matecl 22319 . . . . . 6 ((2 ∈ 𝑁 ∧ 1 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (2𝑀1) ∈ (Base‘𝑅))
145127, 118, 121, 144syl3anc 1373 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (2𝑀1) ∈ (Base‘𝑅))
1462, 11matecl 22319 . . . . . 6 ((1 ∈ 𝑁 ∧ 2 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (1𝑀2) ∈ (Base‘𝑅))
147118, 127, 121, 146syl3anc 1373 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (1𝑀2) ∈ (Base‘𝑅))
14811, 7ringcl 20166 . . . . 5 ((𝑅 ∈ Ring ∧ (2𝑀1) ∈ (Base‘𝑅) ∧ (1𝑀2) ∈ (Base‘𝑅)) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅))
14922, 145, 147, 148syl3anc 1373 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅))
150 m2detleib.m . . . . 5 = (-g𝑅)
15115, 4, 5, 6, 108, 136, 7, 150m2detleiblem7 22521 . . . 4 ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅) ∧ ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅)) → (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
15222, 131, 149, 151syl3anc 1373 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
153106, 143, 1523eqtrd 2769 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
15410, 63, 1533eqtrd 2769 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cun 3915  cin 3916  c0 4299  {csn 4592  {cpr 4594  cop 4598  cmpt 5191  cfv 6514  (class class class)co 7390  Fincfn 8921  1c1 11076  cn 12193  2c2 12248  Basecbs 17186  +gcplusg 17227  .rcmulr 17228   Σg cgsu 17410  Mndcmnd 18668  invgcminusg 18873  -gcsg 18874  SymGrpcsymg 19306  pmSgncpsgn 19426  CMndccmn 19717  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  ℤRHomczrh 21416   Mat cmat 22301   maDet cmdat 22478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-reverse 14731  df-s2 14821  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-gim 19198  df-cntz 19256  df-oppg 19285  df-symg 19307  df-pmtr 19379  df-psgn 19428  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-dsmm 21648  df-frlm 21663  df-mat 22302  df-mdet 22479
This theorem is referenced by:  lmat22det  33819
  Copyright terms: Public domain W3C validator