MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleib Structured version   Visualization version   GIF version

Theorem m2detleib 21243
Description: Leibniz' Formula for 2x2-matrices. (Contributed by AV, 21-Dec-2018.) (Revised by AV, 26-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
m2detleib.n 𝑁 = {1, 2}
m2detleib.d 𝐷 = (𝑁 maDet 𝑅)
m2detleib.a 𝐴 = (𝑁 Mat 𝑅)
m2detleib.b 𝐵 = (Base‘𝐴)
m2detleib.m = (-g𝑅)
m2detleib.t · = (.r𝑅)
Assertion
Ref Expression
m2detleib ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))

Proof of Theorem m2detleib
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2detleib.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 m2detleib.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 m2detleib.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2824 . . . 4 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
5 eqid 2824 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2824 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
7 m2detleib.t . . . 4 · = (.r𝑅)
8 eqid 2824 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib1 21203 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))))
109adantl 485 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))))
11 eqid 2824 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 eqid 2824 . . 3 (+g𝑅) = (+g𝑅)
13 ringcmn 19334 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1413adantr 484 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ CMnd)
15 m2detleib.n . . . . . 6 𝑁 = {1, 2}
16 prfi 8790 . . . . . 6 {1, 2} ∈ Fin
1715, 16eqeltri 2912 . . . . 5 𝑁 ∈ Fin
18 eqid 2824 . . . . . 6 (SymGrp‘𝑁) = (SymGrp‘𝑁)
1918, 4symgbasfi 18507 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
2017, 19ax-mp 5 . . . 4 (Base‘(SymGrp‘𝑁)) ∈ Fin
2120a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) ∈ Fin)
22 simpl 486 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
2322adantr 484 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
244, 6, 5zrhpsgnelbas 20290 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
2517, 24mp3an2 1446 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
2625adantlr 714 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
27 simpr 488 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑘 ∈ (Base‘(SymGrp‘𝑁)))
28 simpr 488 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
2928adantr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑀𝐵)
3015, 4, 2, 3, 8m2detleiblem2 21240 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
3123, 27, 29, 30syl3anc 1368 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
3211, 7ringcl 19314 . . . 4 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
3323, 26, 31, 32syl3anc 1368 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
34 opex 5343 . . . . . . . 8 ⟨1, 1⟩ ∈ V
35 opex 5343 . . . . . . . 8 ⟨2, 2⟩ ∈ V
3634, 35pm3.2i 474 . . . . . . 7 (⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V)
37 opex 5343 . . . . . . . 8 ⟨1, 2⟩ ∈ V
38 opex 5343 . . . . . . . 8 ⟨2, 1⟩ ∈ V
3937, 38pm3.2i 474 . . . . . . 7 (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)
4036, 39pm3.2i 474 . . . . . 6 ((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V))
41 1ne2 11842 . . . . . . . . . 10 1 ≠ 2
4241olci 863 . . . . . . . . 9 (1 ≠ 1 ∨ 1 ≠ 2)
43 1ex 10635 . . . . . . . . . 10 1 ∈ V
4443, 43opthne 5361 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨1, 2⟩ ↔ (1 ≠ 1 ∨ 1 ≠ 2))
4542, 44mpbir 234 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨1, 2⟩
4641orci 862 . . . . . . . . 9 (1 ≠ 2 ∨ 1 ≠ 1)
4743, 43opthne 5361 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨2, 1⟩ ↔ (1 ≠ 2 ∨ 1 ≠ 1))
4846, 47mpbir 234 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨2, 1⟩
4945, 48pm3.2i 474 . . . . . . 7 (⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩)
5049orci 862 . . . . . 6 ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))
5140, 50pm3.2i 474 . . . . 5 (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩)))
5251a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))))
53 prneimg 4769 . . . . 5 (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) → (((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩)) → {⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩}))
5453imp 410 . . . 4 ((((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))) → {⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩})
55 disjsn2 4633 . . . 4 ({⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩} → ({{⟨1, 1⟩, ⟨2, 2⟩}} ∩ {{⟨1, 2⟩, ⟨2, 1⟩}}) = ∅)
5652, 54, 553syl 18 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ({{⟨1, 1⟩, ⟨2, 2⟩}} ∩ {{⟨1, 2⟩, ⟨2, 1⟩}}) = ∅)
57 2nn 11707 . . . . . 6 2 ∈ ℕ
5818, 4, 15symg2bas 18521 . . . . . 6 ((1 ∈ V ∧ 2 ∈ ℕ) → (Base‘(SymGrp‘𝑁)) = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
5943, 57, 58mp2an 691 . . . . 5 (Base‘(SymGrp‘𝑁)) = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
60 df-pr 4553 . . . . 5 {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}})
6159, 60eqtri 2847 . . . 4 (Base‘(SymGrp‘𝑁)) = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}})
6261a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}}))
6311, 12, 14, 21, 33, 56, 62gsummptfidmsplit 19050 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))))
64 ringmnd 19307 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
6564adantr 484 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Mnd)
66 prex 5320 . . . . . 6 {⟨1, 1⟩, ⟨2, 2⟩} ∈ V
6766a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 1⟩, ⟨2, 2⟩} ∈ V)
6866prid1 4683 . . . . . . . . 9 {⟨1, 1⟩, ⟨2, 2⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
6968, 59eleqtrri 2915 . . . . . . . 8 {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))
7069a1i 11 . . . . . . 7 (𝑀𝐵 → {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁)))
714, 6, 5zrhpsgnelbas 20290 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7217, 71mp3an2 1446 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7370, 72sylan2 595 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7415, 4, 2, 3, 8m2detleiblem2 21240 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
7569, 74mp3an2 1446 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
7611, 7ringcl 19314 . . . . . 6 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
7722, 73, 75, 76syl3anc 1368 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
78 2fveq3 6666 . . . . . . 7 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})))
79 fveq1 6660 . . . . . . . . . 10 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑘𝑛) = ({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛))
8079oveq1d 7164 . . . . . . . . 9 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((𝑘𝑛)𝑀𝑛) = (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))
8180mpteq2dv 5148 . . . . . . . 8 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))
8281oveq2d 7165 . . . . . . 7 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))
8378, 82oveq12d 7167 . . . . . 6 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
8411, 83gsumsn 19074 . . . . 5 ((𝑅 ∈ Mnd ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
8565, 67, 77, 84syl3anc 1368 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
86 prex 5320 . . . . . 6 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
8786a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 2⟩, ⟨2, 1⟩} ∈ V)
8886prid2 4684 . . . . . . . . 9 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
8988, 59eleqtrri 2915 . . . . . . . 8 {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))
9089a1i 11 . . . . . . 7 (𝑀𝐵 → {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁)))
914, 6, 5zrhpsgnelbas 20290 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9217, 91mp3an2 1446 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9390, 92sylan2 595 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9415, 4, 2, 3, 8m2detleiblem2 21240 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
9589, 94mp3an2 1446 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
9611, 7ringcl 19314 . . . . . 6 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
9722, 93, 95, 96syl3anc 1368 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
98 2fveq3 6666 . . . . . . 7 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})))
99 fveq1 6660 . . . . . . . . . 10 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑘𝑛) = ({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛))
10099oveq1d 7164 . . . . . . . . 9 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((𝑘𝑛)𝑀𝑛) = (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))
101100mpteq2dv 5148 . . . . . . . 8 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))
102101oveq2d 7165 . . . . . . 7 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))
10398, 102oveq12d 7167 . . . . . 6 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10411, 103gsumsn 19074 . . . . 5 ((𝑅 ∈ Mnd ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10565, 87, 97, 104syl3anc 1368 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10685, 105oveq12d 7167 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))) = ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))(+g𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))))
107 eqidd 2825 . . . . . . 7 (𝑀𝐵 → {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩})
108 eqid 2824 . . . . . . . 8 (1r𝑅) = (1r𝑅)
10915, 4, 5, 6, 108m2detleiblem5 21237 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩}) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) = (1r𝑅))
110107, 109sylan2 595 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) = (1r𝑅))
111 eqidd 2825 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩})
1128, 7mgpplusg 19243 . . . . . . . 8 · = (+g‘(mulGrp‘𝑅))
11315, 4, 2, 3, 8, 112m2detleiblem3 21241 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
11422, 111, 28, 113syl3anc 1368 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
115110, 114oveq12d 7167 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) = ((1r𝑅) · ((1𝑀1) · (2𝑀2))))
11643prid1 4683 . . . . . . . . . 10 1 ∈ {1, 2}
117116, 15eleqtrri 2915 . . . . . . . . 9 1 ∈ 𝑁
118117a1i 11 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ 𝑁)
1193eleq2i 2907 . . . . . . . . . 10 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
120119biimpi 219 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
121120adantl 485 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
1222, 11matecl 21037 . . . . . . . 8 ((1 ∈ 𝑁 ∧ 1 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (1𝑀1) ∈ (Base‘𝑅))
123118, 118, 121, 122syl3anc 1368 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (1𝑀1) ∈ (Base‘𝑅))
124 prid2g 4682 . . . . . . . . . . 11 (2 ∈ ℕ → 2 ∈ {1, 2})
12557, 124ax-mp 5 . . . . . . . . . 10 2 ∈ {1, 2}
126125, 15eleqtrri 2915 . . . . . . . . 9 2 ∈ 𝑁
127126a1i 11 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 2 ∈ 𝑁)
1282, 11matecl 21037 . . . . . . . 8 ((2 ∈ 𝑁 ∧ 2 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (2𝑀2) ∈ (Base‘𝑅))
129127, 127, 121, 128syl3anc 1368 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (2𝑀2) ∈ (Base‘𝑅))
13011, 7ringcl 19314 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1𝑀1) ∈ (Base‘𝑅) ∧ (2𝑀2) ∈ (Base‘𝑅)) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅))
13122, 123, 129, 130syl3anc 1368 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅))
13211, 7, 108ringlidm 19324 . . . . . 6 ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅)) → ((1r𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2)))
133131, 132syldan 594 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((1r𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2)))
134115, 133eqtrd 2859 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) = ((1𝑀1) · (2𝑀2)))
135 eqidd 2825 . . . . . 6 (𝑀𝐵 → {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩})
136 eqid 2824 . . . . . . 7 (invg𝑅) = (invg𝑅)
13715, 4, 5, 6, 108, 136m2detleiblem6 21238 . . . . . 6 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩}) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) = ((invg𝑅)‘(1r𝑅)))
138135, 137sylan2 595 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) = ((invg𝑅)‘(1r𝑅)))
139 eqidd 2825 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩})
14015, 4, 2, 3, 8, 112m2detleiblem4 21242 . . . . . 6 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
14122, 139, 28, 140syl3anc 1368 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
142138, 141oveq12d 7167 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) = (((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2))))
143134, 142oveq12d 7167 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))(+g𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))) = (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))))
1442, 11matecl 21037 . . . . . 6 ((2 ∈ 𝑁 ∧ 1 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (2𝑀1) ∈ (Base‘𝑅))
145127, 118, 121, 144syl3anc 1368 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (2𝑀1) ∈ (Base‘𝑅))
1462, 11matecl 21037 . . . . . 6 ((1 ∈ 𝑁 ∧ 2 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (1𝑀2) ∈ (Base‘𝑅))
147118, 127, 121, 146syl3anc 1368 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (1𝑀2) ∈ (Base‘𝑅))
14811, 7ringcl 19314 . . . . 5 ((𝑅 ∈ Ring ∧ (2𝑀1) ∈ (Base‘𝑅) ∧ (1𝑀2) ∈ (Base‘𝑅)) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅))
14922, 145, 147, 148syl3anc 1368 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅))
150 m2detleib.m . . . . 5 = (-g𝑅)
15115, 4, 5, 6, 108, 136, 7, 150m2detleiblem7 21239 . . . 4 ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅) ∧ ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅)) → (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
15222, 131, 149, 151syl3anc 1368 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
153106, 143, 1523eqtrd 2863 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
15410, 63, 1533eqtrd 2863 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3014  Vcvv 3480  cun 3917  cin 3918  c0 4276  {csn 4550  {cpr 4552  cop 4556  cmpt 5132  cfv 6343  (class class class)co 7149  Fincfn 8505  1c1 10536  cn 11634  2c2 11689  Basecbs 16483  +gcplusg 16565  .rcmulr 16566   Σg cgsu 16714  Mndcmnd 17911  invgcminusg 18104  -gcsg 18105  SymGrpcsymg 18495  pmSgncpsgn 18617  CMndccmn 18906  mulGrpcmgp 19239  1rcur 19251  Ringcrg 19297  ℤRHomczrh 20200   Mat cmat 21019   maDet cmdat 21196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-addf 10614  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-ot 4559  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-sup 8903  df-oi 8971  df-dju 9327  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-xnn0 11965  df-z 11979  df-dec 12096  df-uz 12241  df-rp 12387  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-fac 13639  df-bc 13668  df-hash 13696  df-word 13867  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-splice 14112  df-reverse 14121  df-s2 14210  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-efmnd 18034  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-gim 18399  df-cntz 18447  df-oppg 18474  df-symg 18496  df-pmtr 18570  df-psgn 18619  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-rnghom 19470  df-subrg 19533  df-sra 19944  df-rgmod 19945  df-cnfld 20099  df-zring 20171  df-zrh 20204  df-dsmm 20428  df-frlm 20443  df-mat 21020  df-mdet 21197
This theorem is referenced by:  lmat22det  31150
  Copyright terms: Public domain W3C validator