MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleib Structured version   Visualization version   GIF version

Theorem m2detleib 21688
Description: Leibniz' Formula for 2x2-matrices. (Contributed by AV, 21-Dec-2018.) (Revised by AV, 26-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
m2detleib.n 𝑁 = {1, 2}
m2detleib.d 𝐷 = (𝑁 maDet 𝑅)
m2detleib.a 𝐴 = (𝑁 Mat 𝑅)
m2detleib.b 𝐵 = (Base‘𝐴)
m2detleib.m = (-g𝑅)
m2detleib.t · = (.r𝑅)
Assertion
Ref Expression
m2detleib ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))

Proof of Theorem m2detleib
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2detleib.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 m2detleib.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 m2detleib.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2738 . . . 4 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
5 eqid 2738 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2738 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
7 m2detleib.t . . . 4 · = (.r𝑅)
8 eqid 2738 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib1 21648 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))))
109adantl 481 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))))
11 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 eqid 2738 . . 3 (+g𝑅) = (+g𝑅)
13 ringcmn 19735 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1413adantr 480 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ CMnd)
15 m2detleib.n . . . . . 6 𝑁 = {1, 2}
16 prfi 9019 . . . . . 6 {1, 2} ∈ Fin
1715, 16eqeltri 2835 . . . . 5 𝑁 ∈ Fin
18 eqid 2738 . . . . . 6 (SymGrp‘𝑁) = (SymGrp‘𝑁)
1918, 4symgbasfi 18901 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
2017, 19ax-mp 5 . . . 4 (Base‘(SymGrp‘𝑁)) ∈ Fin
2120a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) ∈ Fin)
22 simpl 482 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
2322adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
244, 6, 5zrhpsgnelbas 20711 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
2517, 24mp3an2 1447 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
2625adantlr 711 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
27 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑘 ∈ (Base‘(SymGrp‘𝑁)))
28 simpr 484 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
2928adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑀𝐵)
3015, 4, 2, 3, 8m2detleiblem2 21685 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
3123, 27, 29, 30syl3anc 1369 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
3211, 7ringcl 19715 . . . 4 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
3323, 26, 31, 32syl3anc 1369 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
34 opex 5373 . . . . . . . 8 ⟨1, 1⟩ ∈ V
35 opex 5373 . . . . . . . 8 ⟨2, 2⟩ ∈ V
3634, 35pm3.2i 470 . . . . . . 7 (⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V)
37 opex 5373 . . . . . . . 8 ⟨1, 2⟩ ∈ V
38 opex 5373 . . . . . . . 8 ⟨2, 1⟩ ∈ V
3937, 38pm3.2i 470 . . . . . . 7 (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)
4036, 39pm3.2i 470 . . . . . 6 ((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V))
41 1ne2 12111 . . . . . . . . . 10 1 ≠ 2
4241olci 862 . . . . . . . . 9 (1 ≠ 1 ∨ 1 ≠ 2)
43 1ex 10902 . . . . . . . . . 10 1 ∈ V
4443, 43opthne 5391 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨1, 2⟩ ↔ (1 ≠ 1 ∨ 1 ≠ 2))
4542, 44mpbir 230 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨1, 2⟩
4641orci 861 . . . . . . . . 9 (1 ≠ 2 ∨ 1 ≠ 1)
4743, 43opthne 5391 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨2, 1⟩ ↔ (1 ≠ 2 ∨ 1 ≠ 1))
4846, 47mpbir 230 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨2, 1⟩
4945, 48pm3.2i 470 . . . . . . 7 (⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩)
5049orci 861 . . . . . 6 ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))
5140, 50pm3.2i 470 . . . . 5 (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩)))
5251a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))))
53 prneimg 4782 . . . . 5 (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) → (((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩)) → {⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩}))
5453imp 406 . . . 4 ((((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))) → {⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩})
55 disjsn2 4645 . . . 4 ({⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩} → ({{⟨1, 1⟩, ⟨2, 2⟩}} ∩ {{⟨1, 2⟩, ⟨2, 1⟩}}) = ∅)
5652, 54, 553syl 18 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ({{⟨1, 1⟩, ⟨2, 2⟩}} ∩ {{⟨1, 2⟩, ⟨2, 1⟩}}) = ∅)
57 2nn 11976 . . . . . 6 2 ∈ ℕ
5818, 4, 15symg2bas 18915 . . . . . 6 ((1 ∈ V ∧ 2 ∈ ℕ) → (Base‘(SymGrp‘𝑁)) = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
5943, 57, 58mp2an 688 . . . . 5 (Base‘(SymGrp‘𝑁)) = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
60 df-pr 4561 . . . . 5 {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}})
6159, 60eqtri 2766 . . . 4 (Base‘(SymGrp‘𝑁)) = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}})
6261a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}}))
6311, 12, 14, 21, 33, 56, 62gsummptfidmsplit 19446 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))))
64 ringmnd 19708 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
6564adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Mnd)
66 prex 5350 . . . . . 6 {⟨1, 1⟩, ⟨2, 2⟩} ∈ V
6766a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 1⟩, ⟨2, 2⟩} ∈ V)
6866prid1 4695 . . . . . . . . 9 {⟨1, 1⟩, ⟨2, 2⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
6968, 59eleqtrri 2838 . . . . . . . 8 {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))
7069a1i 11 . . . . . . 7 (𝑀𝐵 → {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁)))
714, 6, 5zrhpsgnelbas 20711 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7217, 71mp3an2 1447 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7370, 72sylan2 592 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7415, 4, 2, 3, 8m2detleiblem2 21685 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
7569, 74mp3an2 1447 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
7611, 7ringcl 19715 . . . . . 6 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
7722, 73, 75, 76syl3anc 1369 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
78 2fveq3 6761 . . . . . . 7 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})))
79 fveq1 6755 . . . . . . . . . 10 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑘𝑛) = ({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛))
8079oveq1d 7270 . . . . . . . . 9 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((𝑘𝑛)𝑀𝑛) = (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))
8180mpteq2dv 5172 . . . . . . . 8 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))
8281oveq2d 7271 . . . . . . 7 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))
8378, 82oveq12d 7273 . . . . . 6 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
8411, 83gsumsn 19470 . . . . 5 ((𝑅 ∈ Mnd ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
8565, 67, 77, 84syl3anc 1369 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
86 prex 5350 . . . . . 6 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
8786a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 2⟩, ⟨2, 1⟩} ∈ V)
8886prid2 4696 . . . . . . . . 9 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
8988, 59eleqtrri 2838 . . . . . . . 8 {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))
9089a1i 11 . . . . . . 7 (𝑀𝐵 → {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁)))
914, 6, 5zrhpsgnelbas 20711 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9217, 91mp3an2 1447 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9390, 92sylan2 592 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9415, 4, 2, 3, 8m2detleiblem2 21685 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
9589, 94mp3an2 1447 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
9611, 7ringcl 19715 . . . . . 6 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
9722, 93, 95, 96syl3anc 1369 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
98 2fveq3 6761 . . . . . . 7 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})))
99 fveq1 6755 . . . . . . . . . 10 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑘𝑛) = ({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛))
10099oveq1d 7270 . . . . . . . . 9 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((𝑘𝑛)𝑀𝑛) = (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))
101100mpteq2dv 5172 . . . . . . . 8 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))
102101oveq2d 7271 . . . . . . 7 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))
10398, 102oveq12d 7273 . . . . . 6 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10411, 103gsumsn 19470 . . . . 5 ((𝑅 ∈ Mnd ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10565, 87, 97, 104syl3anc 1369 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10685, 105oveq12d 7273 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))) = ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))(+g𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))))
107 eqidd 2739 . . . . . . 7 (𝑀𝐵 → {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩})
108 eqid 2738 . . . . . . . 8 (1r𝑅) = (1r𝑅)
10915, 4, 5, 6, 108m2detleiblem5 21682 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩}) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) = (1r𝑅))
110107, 109sylan2 592 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) = (1r𝑅))
111 eqidd 2739 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩})
1128, 7mgpplusg 19639 . . . . . . . 8 · = (+g‘(mulGrp‘𝑅))
11315, 4, 2, 3, 8, 112m2detleiblem3 21686 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
11422, 111, 28, 113syl3anc 1369 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
115110, 114oveq12d 7273 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) = ((1r𝑅) · ((1𝑀1) · (2𝑀2))))
11643prid1 4695 . . . . . . . . . 10 1 ∈ {1, 2}
117116, 15eleqtrri 2838 . . . . . . . . 9 1 ∈ 𝑁
118117a1i 11 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ 𝑁)
1193eleq2i 2830 . . . . . . . . . 10 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
120119biimpi 215 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
121120adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
1222, 11matecl 21482 . . . . . . . 8 ((1 ∈ 𝑁 ∧ 1 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (1𝑀1) ∈ (Base‘𝑅))
123118, 118, 121, 122syl3anc 1369 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (1𝑀1) ∈ (Base‘𝑅))
124 prid2g 4694 . . . . . . . . . . 11 (2 ∈ ℕ → 2 ∈ {1, 2})
12557, 124ax-mp 5 . . . . . . . . . 10 2 ∈ {1, 2}
126125, 15eleqtrri 2838 . . . . . . . . 9 2 ∈ 𝑁
127126a1i 11 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 2 ∈ 𝑁)
1282, 11matecl 21482 . . . . . . . 8 ((2 ∈ 𝑁 ∧ 2 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (2𝑀2) ∈ (Base‘𝑅))
129127, 127, 121, 128syl3anc 1369 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (2𝑀2) ∈ (Base‘𝑅))
13011, 7ringcl 19715 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1𝑀1) ∈ (Base‘𝑅) ∧ (2𝑀2) ∈ (Base‘𝑅)) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅))
13122, 123, 129, 130syl3anc 1369 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅))
13211, 7, 108ringlidm 19725 . . . . . 6 ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅)) → ((1r𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2)))
133131, 132syldan 590 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((1r𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2)))
134115, 133eqtrd 2778 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) = ((1𝑀1) · (2𝑀2)))
135 eqidd 2739 . . . . . 6 (𝑀𝐵 → {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩})
136 eqid 2738 . . . . . . 7 (invg𝑅) = (invg𝑅)
13715, 4, 5, 6, 108, 136m2detleiblem6 21683 . . . . . 6 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩}) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) = ((invg𝑅)‘(1r𝑅)))
138135, 137sylan2 592 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) = ((invg𝑅)‘(1r𝑅)))
139 eqidd 2739 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩})
14015, 4, 2, 3, 8, 112m2detleiblem4 21687 . . . . . 6 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
14122, 139, 28, 140syl3anc 1369 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
142138, 141oveq12d 7273 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) = (((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2))))
143134, 142oveq12d 7273 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))(+g𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))) = (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))))
1442, 11matecl 21482 . . . . . 6 ((2 ∈ 𝑁 ∧ 1 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (2𝑀1) ∈ (Base‘𝑅))
145127, 118, 121, 144syl3anc 1369 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (2𝑀1) ∈ (Base‘𝑅))
1462, 11matecl 21482 . . . . . 6 ((1 ∈ 𝑁 ∧ 2 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (1𝑀2) ∈ (Base‘𝑅))
147118, 127, 121, 146syl3anc 1369 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (1𝑀2) ∈ (Base‘𝑅))
14811, 7ringcl 19715 . . . . 5 ((𝑅 ∈ Ring ∧ (2𝑀1) ∈ (Base‘𝑅) ∧ (1𝑀2) ∈ (Base‘𝑅)) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅))
14922, 145, 147, 148syl3anc 1369 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅))
150 m2detleib.m . . . . 5 = (-g𝑅)
15115, 4, 5, 6, 108, 136, 7, 150m2detleiblem7 21684 . . . 4 ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅) ∧ ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅)) → (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
15222, 131, 149, 151syl3anc 1369 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
153106, 143, 1523eqtrd 2782 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
15410, 63, 1533eqtrd 2782 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cun 3881  cin 3882  c0 4253  {csn 4558  {cpr 4560  cop 4564  cmpt 5153  cfv 6418  (class class class)co 7255  Fincfn 8691  1c1 10803  cn 11903  2c2 11958  Basecbs 16840  +gcplusg 16888  .rcmulr 16889   Σg cgsu 17068  Mndcmnd 18300  invgcminusg 18493  -gcsg 18494  SymGrpcsymg 18889  pmSgncpsgn 19012  CMndccmn 19301  mulGrpcmgp 19635  1rcur 19652  Ringcrg 19698  ℤRHomczrh 20613   Mat cmat 21464   maDet cmdat 21641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-reverse 14400  df-s2 14489  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-efmnd 18423  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-gim 18790  df-cntz 18838  df-oppg 18865  df-symg 18890  df-pmtr 18965  df-psgn 19014  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-rnghom 19874  df-subrg 19937  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-dsmm 20849  df-frlm 20864  df-mat 21465  df-mdet 21642
This theorem is referenced by:  lmat22det  31674
  Copyright terms: Public domain W3C validator