MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleib Structured version   Visualization version   GIF version

Theorem m2detleib 22652
Description: Leibniz' Formula for 2x2-matrices. (Contributed by AV, 21-Dec-2018.) (Revised by AV, 26-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
m2detleib.n 𝑁 = {1, 2}
m2detleib.d 𝐷 = (𝑁 maDet 𝑅)
m2detleib.a 𝐴 = (𝑁 Mat 𝑅)
m2detleib.b 𝐵 = (Base‘𝐴)
m2detleib.m = (-g𝑅)
m2detleib.t · = (.r𝑅)
Assertion
Ref Expression
m2detleib ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))

Proof of Theorem m2detleib
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2detleib.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 m2detleib.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 m2detleib.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2734 . . . 4 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
5 eqid 2734 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2734 . . . 4 (pmSgn‘𝑁) = (pmSgn‘𝑁)
7 m2detleib.t . . . 4 · = (.r𝑅)
8 eqid 2734 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib1 22612 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))))
109adantl 481 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))))
11 eqid 2734 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 eqid 2734 . . 3 (+g𝑅) = (+g𝑅)
13 ringcmn 20295 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1413adantr 480 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ CMnd)
15 m2detleib.n . . . . . 6 𝑁 = {1, 2}
16 prfi 9360 . . . . . 6 {1, 2} ∈ Fin
1715, 16eqeltri 2834 . . . . 5 𝑁 ∈ Fin
18 eqid 2734 . . . . . 6 (SymGrp‘𝑁) = (SymGrp‘𝑁)
1918, 4symgbasfi 19410 . . . . 5 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
2017, 19ax-mp 5 . . . 4 (Base‘(SymGrp‘𝑁)) ∈ Fin
2120a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) ∈ Fin)
22 simpl 482 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
2322adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑅 ∈ Ring)
244, 6, 5zrhpsgnelbas 21629 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
2517, 24mp3an2 1448 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
2625adantlr 715 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅))
27 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑘 ∈ (Base‘(SymGrp‘𝑁)))
28 simpr 484 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
2928adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → 𝑀𝐵)
3015, 4, 2, 3, 8m2detleiblem2 22649 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
3123, 27, 29, 30syl3anc 1370 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
3211, 7ringcl 20267 . . . 4 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
3323, 26, 31, 32syl3anc 1370 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
34 opex 5474 . . . . . . . 8 ⟨1, 1⟩ ∈ V
35 opex 5474 . . . . . . . 8 ⟨2, 2⟩ ∈ V
3634, 35pm3.2i 470 . . . . . . 7 (⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V)
37 opex 5474 . . . . . . . 8 ⟨1, 2⟩ ∈ V
38 opex 5474 . . . . . . . 8 ⟨2, 1⟩ ∈ V
3937, 38pm3.2i 470 . . . . . . 7 (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)
4036, 39pm3.2i 470 . . . . . 6 ((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V))
41 1ne2 12471 . . . . . . . . . 10 1 ≠ 2
4241olci 866 . . . . . . . . 9 (1 ≠ 1 ∨ 1 ≠ 2)
43 1ex 11254 . . . . . . . . . 10 1 ∈ V
4443, 43opthne 5492 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨1, 2⟩ ↔ (1 ≠ 1 ∨ 1 ≠ 2))
4542, 44mpbir 231 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨1, 2⟩
4641orci 865 . . . . . . . . 9 (1 ≠ 2 ∨ 1 ≠ 1)
4743, 43opthne 5492 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨2, 1⟩ ↔ (1 ≠ 2 ∨ 1 ≠ 1))
4846, 47mpbir 231 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨2, 1⟩
4945, 48pm3.2i 470 . . . . . . 7 (⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩)
5049orci 865 . . . . . 6 ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))
5140, 50pm3.2i 470 . . . . 5 (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩)))
5251a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))))
53 prneimg 4858 . . . . 5 (((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) → (((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩)) → {⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩}))
5453imp 406 . . . 4 ((((⟨1, 1⟩ ∈ V ∧ ⟨2, 2⟩ ∈ V) ∧ (⟨1, 2⟩ ∈ V ∧ ⟨2, 1⟩ ∈ V)) ∧ ((⟨1, 1⟩ ≠ ⟨1, 2⟩ ∧ ⟨1, 1⟩ ≠ ⟨2, 1⟩) ∨ (⟨2, 2⟩ ≠ ⟨1, 2⟩ ∧ ⟨2, 2⟩ ≠ ⟨2, 1⟩))) → {⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩})
55 disjsn2 4716 . . . 4 ({⟨1, 1⟩, ⟨2, 2⟩} ≠ {⟨1, 2⟩, ⟨2, 1⟩} → ({{⟨1, 1⟩, ⟨2, 2⟩}} ∩ {{⟨1, 2⟩, ⟨2, 1⟩}}) = ∅)
5652, 54, 553syl 18 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ({{⟨1, 1⟩, ⟨2, 2⟩}} ∩ {{⟨1, 2⟩, ⟨2, 1⟩}}) = ∅)
57 2nn 12336 . . . . . 6 2 ∈ ℕ
5818, 4, 15symg2bas 19424 . . . . . 6 ((1 ∈ V ∧ 2 ∈ ℕ) → (Base‘(SymGrp‘𝑁)) = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
5943, 57, 58mp2an 692 . . . . 5 (Base‘(SymGrp‘𝑁)) = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
60 df-pr 4633 . . . . 5 {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}})
6159, 60eqtri 2762 . . . 4 (Base‘(SymGrp‘𝑁)) = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}})
6261a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(SymGrp‘𝑁)) = ({{⟨1, 1⟩, ⟨2, 2⟩}} ∪ {{⟨1, 2⟩, ⟨2, 1⟩}}))
6311, 12, 14, 21, 33, 56, 62gsummptfidmsplit 19962 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ (Base‘(SymGrp‘𝑁)) ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))))
64 ringmnd 20260 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
6564adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Mnd)
66 prex 5442 . . . . . 6 {⟨1, 1⟩, ⟨2, 2⟩} ∈ V
6766a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 1⟩, ⟨2, 2⟩} ∈ V)
6866prid1 4766 . . . . . . . . 9 {⟨1, 1⟩, ⟨2, 2⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
6968, 59eleqtrri 2837 . . . . . . . 8 {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))
7069a1i 11 . . . . . . 7 (𝑀𝐵 → {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁)))
714, 6, 5zrhpsgnelbas 21629 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7217, 71mp3an2 1448 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7370, 72sylan2 593 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅))
7415, 4, 2, 3, 8m2detleiblem2 22649 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
7569, 74mp3an2 1448 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
7611, 7ringcl 20267 . . . . . 6 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
7722, 73, 75, 76syl3anc 1370 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
78 2fveq3 6911 . . . . . . 7 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})))
79 fveq1 6905 . . . . . . . . . 10 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑘𝑛) = ({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛))
8079oveq1d 7445 . . . . . . . . 9 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((𝑘𝑛)𝑀𝑛) = (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))
8180mpteq2dv 5249 . . . . . . . 8 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))
8281oveq2d 7446 . . . . . . 7 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))
8378, 82oveq12d 7448 . . . . . 6 (𝑘 = {⟨1, 1⟩, ⟨2, 2⟩} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
8411, 83gsumsn 19986 . . . . 5 ((𝑅 ∈ Mnd ∧ {⟨1, 1⟩, ⟨2, 2⟩} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
8565, 67, 77, 84syl3anc 1370 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))))
86 prex 5442 . . . . . 6 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
8786a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 2⟩, ⟨2, 1⟩} ∈ V)
8886prid2 4767 . . . . . . . . 9 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
8988, 59eleqtrri 2837 . . . . . . . 8 {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))
9089a1i 11 . . . . . . 7 (𝑀𝐵 → {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁)))
914, 6, 5zrhpsgnelbas 21629 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9217, 91mp3an2 1448 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁))) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9390, 92sylan2 593 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅))
9415, 4, 2, 3, 8m2detleiblem2 22649 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
9589, 94mp3an2 1448 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
9611, 7ringcl 20267 . . . . . 6 ((𝑅 ∈ Ring ∧ ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
9722, 93, 95, 96syl3anc 1370 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅))
98 2fveq3 6911 . . . . . . 7 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})))
99 fveq1 6905 . . . . . . . . . 10 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑘𝑛) = ({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛))
10099oveq1d 7445 . . . . . . . . 9 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((𝑘𝑛)𝑀𝑛) = (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))
101100mpteq2dv 5249 . . . . . . . 8 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))
102101oveq2d 7446 . . . . . . 7 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))) = ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))
10398, 102oveq12d 7448 . . . . . 6 (𝑘 = {⟨1, 2⟩, ⟨2, 1⟩} → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10411, 103gsumsn 19986 . . . . 5 ((𝑅 ∈ Mnd ∧ {⟨1, 2⟩, ⟨2, 1⟩} ∈ V ∧ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10565, 87, 97, 104syl3anc 1370 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛)))))) = (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))))
10685, 105oveq12d 7448 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))) = ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))(+g𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))))
107 eqidd 2735 . . . . . . 7 (𝑀𝐵 → {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩})
108 eqid 2734 . . . . . . . 8 (1r𝑅) = (1r𝑅)
10915, 4, 5, 6, 108m2detleiblem5 22646 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩}) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) = (1r𝑅))
110107, 109sylan2 593 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) = (1r𝑅))
111 eqidd 2735 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩})
1128, 7mgpplusg 20155 . . . . . . . 8 · = (+g‘(mulGrp‘𝑅))
11315, 4, 2, 3, 8, 112m2detleiblem3 22650 . . . . . . 7 ((𝑅 ∈ Ring ∧ {⟨1, 1⟩, ⟨2, 2⟩} = {⟨1, 1⟩, ⟨2, 2⟩} ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
11422, 111, 28, 113syl3anc 1370 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))) = ((1𝑀1) · (2𝑀2)))
115110, 114oveq12d 7448 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) = ((1r𝑅) · ((1𝑀1) · (2𝑀2))))
11643prid1 4766 . . . . . . . . . 10 1 ∈ {1, 2}
117116, 15eleqtrri 2837 . . . . . . . . 9 1 ∈ 𝑁
118117a1i 11 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ 𝑁)
1193eleq2i 2830 . . . . . . . . . 10 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
120119biimpi 216 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
121120adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
1222, 11matecl 22446 . . . . . . . 8 ((1 ∈ 𝑁 ∧ 1 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (1𝑀1) ∈ (Base‘𝑅))
123118, 118, 121, 122syl3anc 1370 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (1𝑀1) ∈ (Base‘𝑅))
124 prid2g 4765 . . . . . . . . . . 11 (2 ∈ ℕ → 2 ∈ {1, 2})
12557, 124ax-mp 5 . . . . . . . . . 10 2 ∈ {1, 2}
126125, 15eleqtrri 2837 . . . . . . . . 9 2 ∈ 𝑁
127126a1i 11 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 2 ∈ 𝑁)
1282, 11matecl 22446 . . . . . . . 8 ((2 ∈ 𝑁 ∧ 2 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (2𝑀2) ∈ (Base‘𝑅))
129127, 127, 121, 128syl3anc 1370 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (2𝑀2) ∈ (Base‘𝑅))
13011, 7ringcl 20267 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1𝑀1) ∈ (Base‘𝑅) ∧ (2𝑀2) ∈ (Base‘𝑅)) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅))
13122, 123, 129, 130syl3anc 1370 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅))
13211, 7, 108ringlidm 20282 . . . . . 6 ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅)) → ((1r𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2)))
133131, 132syldan 591 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((1r𝑅) · ((1𝑀1) · (2𝑀2))) = ((1𝑀1) · (2𝑀2)))
134115, 133eqtrd 2774 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛)))) = ((1𝑀1) · (2𝑀2)))
135 eqidd 2735 . . . . . 6 (𝑀𝐵 → {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩})
136 eqid 2734 . . . . . . 7 (invg𝑅) = (invg𝑅)
13715, 4, 5, 6, 108, 136m2detleiblem6 22647 . . . . . 6 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩}) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) = ((invg𝑅)‘(1r𝑅)))
138135, 137sylan2 593 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) = ((invg𝑅)‘(1r𝑅)))
139 eqidd 2735 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩})
14015, 4, 2, 3, 8, 112m2detleiblem4 22651 . . . . . 6 ((𝑅 ∈ Ring ∧ {⟨1, 2⟩, ⟨2, 1⟩} = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
14122, 139, 28, 140syl3anc 1370 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
142138, 141oveq12d 7448 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛)))) = (((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2))))
143134, 142oveq12d 7448 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 1⟩, ⟨2, 2⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 1⟩, ⟨2, 2⟩}‘𝑛)𝑀𝑛))))(+g𝑅)(((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩})) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (({⟨1, 2⟩, ⟨2, 1⟩}‘𝑛)𝑀𝑛))))) = (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))))
1442, 11matecl 22446 . . . . . 6 ((2 ∈ 𝑁 ∧ 1 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (2𝑀1) ∈ (Base‘𝑅))
145127, 118, 121, 144syl3anc 1370 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (2𝑀1) ∈ (Base‘𝑅))
1462, 11matecl 22446 . . . . . 6 ((1 ∈ 𝑁 ∧ 2 ∈ 𝑁𝑀 ∈ (Base‘𝐴)) → (1𝑀2) ∈ (Base‘𝑅))
147118, 127, 121, 146syl3anc 1370 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (1𝑀2) ∈ (Base‘𝑅))
14811, 7ringcl 20267 . . . . 5 ((𝑅 ∈ Ring ∧ (2𝑀1) ∈ (Base‘𝑅) ∧ (1𝑀2) ∈ (Base‘𝑅)) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅))
14922, 145, 147, 148syl3anc 1370 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅))
150 m2detleib.m . . . . 5 = (-g𝑅)
15115, 4, 5, 6, 108, 136, 7, 150m2detleiblem7 22648 . . . 4 ((𝑅 ∈ Ring ∧ ((1𝑀1) · (2𝑀2)) ∈ (Base‘𝑅) ∧ ((2𝑀1) · (1𝑀2)) ∈ (Base‘𝑅)) → (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
15222, 131, 149, 151syl3anc 1370 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((1𝑀1) · (2𝑀2))(+g𝑅)(((invg𝑅)‘(1r𝑅)) · ((2𝑀1) · (1𝑀2)))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
153106, 143, 1523eqtrd 2778 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑅 Σg (𝑘 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))(+g𝑅)(𝑅 Σg (𝑘 ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} ↦ (((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘𝑘)) · ((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ ((𝑘𝑛)𝑀𝑛))))))) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
15410, 63, 1533eqtrd 2778 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐷𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  Vcvv 3477  cun 3960  cin 3961  c0 4338  {csn 4630  {cpr 4632  cop 4636  cmpt 5230  cfv 6562  (class class class)co 7430  Fincfn 8983  1c1 11153  cn 12263  2c2 12318  Basecbs 17244  +gcplusg 17297  .rcmulr 17298   Σg cgsu 17486  Mndcmnd 18759  invgcminusg 18964  -gcsg 18965  SymGrpcsymg 19400  pmSgncpsgn 19521  CMndccmn 19812  mulGrpcmgp 20151  1rcur 20198  Ringcrg 20250  ℤRHomczrh 21527   Mat cmat 22426   maDet cmdat 22605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1508  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-word 14549  df-lsw 14597  df-concat 14605  df-s1 14630  df-substr 14675  df-pfx 14705  df-splice 14784  df-reverse 14793  df-s2 14883  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-efmnd 18894  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-gim 19289  df-cntz 19347  df-oppg 19376  df-symg 19401  df-pmtr 19474  df-psgn 19523  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-sra 21189  df-rgmod 21190  df-cnfld 21382  df-zring 21475  df-zrh 21531  df-dsmm 21769  df-frlm 21784  df-mat 22427  df-mdet 22606
This theorem is referenced by:  lmat22det  33782
  Copyright terms: Public domain W3C validator