| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz7.5 | Structured version Visualization version GIF version | ||
| Description: A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of [TakeutiZaring] p. 36. (Contributed by NM, 18-Feb-2004.) (Revised by David Abernethy, 16-Mar-2011.) |
| Ref | Expression |
|---|---|
| tz7.5 | ⊢ ((Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordwe 6370 | . 2 ⊢ (Ord 𝐴 → E We 𝐴) | |
| 2 | wefrc 5653 | . 2 ⊢ (( E We 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) | |
| 3 | 1, 2 | syl3an1 1163 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ≠ wne 2933 ∃wrex 3061 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 E cep 5557 We wwe 5610 Ord word 6356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 |
| This theorem is referenced by: tz7.7 6383 onint 7789 tfi 7853 peano5 7894 fin23lem26 10344 |
| Copyright terms: Public domain | W3C validator |