![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz7.5 | Structured version Visualization version GIF version |
Description: A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of [TakeutiZaring] p. 36. (Contributed by NM, 18-Feb-2004.) (Revised by David Abernethy, 16-Mar-2011.) |
Ref | Expression |
---|---|
tz7.5 | ⊢ ((Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordwe 6367 | . 2 ⊢ (Ord 𝐴 → E We 𝐴) | |
2 | wefrc 5660 | . 2 ⊢ (( E We 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) | |
3 | 1, 2 | syl3an1 1160 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ≠ wne 2932 ∃wrex 3062 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 E cep 5569 We wwe 5620 Ord word 6353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-ord 6357 |
This theorem is referenced by: tz7.7 6380 onint 7771 tfi 7835 peano5 7877 peano5OLD 7878 fin23lem26 10316 |
Copyright terms: Public domain | W3C validator |