| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz7.5 | Structured version Visualization version GIF version | ||
| Description: A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of [TakeutiZaring] p. 36. (Contributed by NM, 18-Feb-2004.) (Revised by David Abernethy, 16-Mar-2011.) |
| Ref | Expression |
|---|---|
| tz7.5 | ⊢ ((Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordwe 6362 | . 2 ⊢ (Ord 𝐴 → E We 𝐴) | |
| 2 | wefrc 5645 | . 2 ⊢ (( E We 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) | |
| 3 | 1, 2 | syl3an1 1163 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (𝐵 ∩ 𝑥) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ≠ wne 2931 ∃wrex 3059 ∩ cin 3923 ⊆ wss 3924 ∅c0 4306 E cep 5549 We wwe 5602 Ord word 6348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-ord 6352 |
| This theorem is referenced by: tz7.7 6375 onint 7778 tfi 7842 peano5 7883 fin23lem26 10331 |
| Copyright terms: Public domain | W3C validator |