MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.5 Structured version   Visualization version   GIF version

Theorem tz7.5 6203
Description: A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of [TakeutiZaring] p. 36. (Contributed by NM, 18-Feb-2004.) (Revised by David Abernethy, 16-Mar-2011.)
Assertion
Ref Expression
tz7.5 ((Ord 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem tz7.5
StepHypRef Expression
1 ordwe 6195 . 2 (Ord 𝐴 → E We 𝐴)
2 wefrc 5529 . 2 (( E We 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
31, 2syl3an1 1164 1 ((Ord 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wne 2935  wrex 3055  cin 3852  wss 3853  c0 4221   E cep 5443   We wwe 5492  Ord word 6181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-br 5041  df-opab 5103  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-ord 6185
This theorem is referenced by:  tz7.7  6208  onint  7541  tfi  7599  peano5  7636  peano5OLD  7637  fin23lem26  9837
  Copyright terms: Public domain W3C validator