MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.5 Structured version   Visualization version   GIF version

Theorem tz7.5 6375
Description: A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of [TakeutiZaring] p. 36. (Contributed by NM, 18-Feb-2004.) (Revised by David Abernethy, 16-Mar-2011.)
Assertion
Ref Expression
tz7.5 ((Ord 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem tz7.5
StepHypRef Expression
1 ordwe 6367 . 2 (Ord 𝐴 → E We 𝐴)
2 wefrc 5660 . 2 (( E We 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
31, 2syl3an1 1160 1 ((Ord 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wne 2932  wrex 3062  cin 3939  wss 3940  c0 4314   E cep 5569   We wwe 5620  Ord word 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-ord 6357
This theorem is referenced by:  tz7.7  6380  onint  7771  tfi  7835  peano5  7877  peano5OLD  7878  fin23lem26  10316
  Copyright terms: Public domain W3C validator