![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uzoi | Structured version Visualization version GIF version |
Description: An alternative definition of 𝐺 in terms of df-oi 8657. (Contributed by Mario Carneiro, 2-Jun-2015.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzoi | ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7308 | . . . 4 ⊢ Ord ω | |
2 | om2uz.1 | . . . . 5 ⊢ 𝐶 ∈ ℤ | |
3 | om2uz.2 | . . . . 5 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
4 | 2, 3 | om2uzisoi 13008 | . . . 4 ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) |
5 | 1, 4 | pm3.2i 463 | . . 3 ⊢ (Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) |
6 | ordwe 5954 | . . . . . 6 ⊢ (Ord ω → E We ω) | |
7 | 1, 6 | ax-mp 5 | . . . . 5 ⊢ E We ω |
8 | isowe 6827 | . . . . . 6 ⊢ (𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) → ( E We ω ↔ < We (ℤ≥‘𝐶))) | |
9 | 4, 8 | ax-mp 5 | . . . . 5 ⊢ ( E We ω ↔ < We (ℤ≥‘𝐶)) |
10 | 7, 9 | mpbi 222 | . . . 4 ⊢ < We (ℤ≥‘𝐶) |
11 | fvex 6424 | . . . . 5 ⊢ (ℤ≥‘𝐶) ∈ V | |
12 | exse 5276 | . . . . 5 ⊢ ((ℤ≥‘𝐶) ∈ V → < Se (ℤ≥‘𝐶)) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ < Se (ℤ≥‘𝐶) |
14 | eqid 2799 | . . . . 5 ⊢ OrdIso( < , (ℤ≥‘𝐶)) = OrdIso( < , (ℤ≥‘𝐶)) | |
15 | 14 | oieu 8686 | . . . 4 ⊢ (( < We (ℤ≥‘𝐶) ∧ < Se (ℤ≥‘𝐶)) → ((Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) ↔ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶))))) |
16 | 10, 13, 15 | mp2an 684 | . . 3 ⊢ ((Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) ↔ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)))) |
17 | 5, 16 | mpbi 222 | . 2 ⊢ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶))) |
18 | 17 | simpri 480 | 1 ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ↦ cmpt 4922 E cep 5224 Se wse 5269 We wwe 5270 dom cdm 5312 ↾ cres 5314 Ord word 5940 ‘cfv 6101 Isom wiso 6102 (class class class)co 6878 ωcom 7299 reccrdg 7744 OrdIsocoi 8656 1c1 10225 + caddc 10227 < clt 10363 ℤcz 11666 ℤ≥cuz 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-oi 8657 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 |
This theorem is referenced by: ltbwe 19795 |
Copyright terms: Public domain | W3C validator |