![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uzoi | Structured version Visualization version GIF version |
Description: An alternative definition of 𝐺 in terms of df-oi 9507. (Contributed by Mario Carneiro, 2-Jun-2015.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzoi | ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7867 | . . . 4 ⊢ Ord ω | |
2 | om2uz.1 | . . . . 5 ⊢ 𝐶 ∈ ℤ | |
3 | om2uz.2 | . . . . 5 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
4 | 2, 3 | om2uzisoi 13923 | . . . 4 ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) |
5 | 1, 4 | pm3.2i 469 | . . 3 ⊢ (Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) |
6 | ordwe 6376 | . . . . . 6 ⊢ (Ord ω → E We ω) | |
7 | 1, 6 | ax-mp 5 | . . . . 5 ⊢ E We ω |
8 | isowe 7348 | . . . . . 6 ⊢ (𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) → ( E We ω ↔ < We (ℤ≥‘𝐶))) | |
9 | 4, 8 | ax-mp 5 | . . . . 5 ⊢ ( E We ω ↔ < We (ℤ≥‘𝐶)) |
10 | 7, 9 | mpbi 229 | . . . 4 ⊢ < We (ℤ≥‘𝐶) |
11 | fvex 6903 | . . . . 5 ⊢ (ℤ≥‘𝐶) ∈ V | |
12 | exse 5638 | . . . . 5 ⊢ ((ℤ≥‘𝐶) ∈ V → < Se (ℤ≥‘𝐶)) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ < Se (ℤ≥‘𝐶) |
14 | eqid 2730 | . . . . 5 ⊢ OrdIso( < , (ℤ≥‘𝐶)) = OrdIso( < , (ℤ≥‘𝐶)) | |
15 | 14 | oieu 9536 | . . . 4 ⊢ (( < We (ℤ≥‘𝐶) ∧ < Se (ℤ≥‘𝐶)) → ((Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) ↔ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶))))) |
16 | 10, 13, 15 | mp2an 688 | . . 3 ⊢ ((Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) ↔ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)))) |
17 | 5, 16 | mpbi 229 | . 2 ⊢ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶))) |
18 | 17 | simpri 484 | 1 ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ↦ cmpt 5230 E cep 5578 Se wse 5628 We wwe 5629 dom cdm 5675 ↾ cres 5677 Ord word 6362 ‘cfv 6542 Isom wiso 6543 (class class class)co 7411 ωcom 7857 reccrdg 8411 OrdIsocoi 9506 1c1 11113 + caddc 11115 < clt 11252 ℤcz 12562 ℤ≥cuz 12826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-oi 9507 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 |
This theorem is referenced by: ltbwe 21818 |
Copyright terms: Public domain | W3C validator |