| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2uzoi | Structured version Visualization version GIF version | ||
| Description: An alternative definition of 𝐺 in terms of df-oi 9481. (Contributed by Mario Carneiro, 2-Jun-2015.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| Ref | Expression |
|---|---|
| om2uzoi | ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 7860 | . . . 4 ⊢ Ord ω | |
| 2 | om2uz.1 | . . . . 5 ⊢ 𝐶 ∈ ℤ | |
| 3 | om2uz.2 | . . . . 5 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 4 | 2, 3 | om2uzisoi 13929 | . . . 4 ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) |
| 5 | 1, 4 | pm3.2i 470 | . . 3 ⊢ (Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) |
| 6 | ordwe 6353 | . . . . . 6 ⊢ (Ord ω → E We ω) | |
| 7 | 1, 6 | ax-mp 5 | . . . . 5 ⊢ E We ω |
| 8 | isowe 7331 | . . . . . 6 ⊢ (𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) → ( E We ω ↔ < We (ℤ≥‘𝐶))) | |
| 9 | 4, 8 | ax-mp 5 | . . . . 5 ⊢ ( E We ω ↔ < We (ℤ≥‘𝐶)) |
| 10 | 7, 9 | mpbi 230 | . . . 4 ⊢ < We (ℤ≥‘𝐶) |
| 11 | fvex 6878 | . . . . 5 ⊢ (ℤ≥‘𝐶) ∈ V | |
| 12 | exse 5606 | . . . . 5 ⊢ ((ℤ≥‘𝐶) ∈ V → < Se (ℤ≥‘𝐶)) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ < Se (ℤ≥‘𝐶) |
| 14 | eqid 2730 | . . . . 5 ⊢ OrdIso( < , (ℤ≥‘𝐶)) = OrdIso( < , (ℤ≥‘𝐶)) | |
| 15 | 14 | oieu 9510 | . . . 4 ⊢ (( < We (ℤ≥‘𝐶) ∧ < Se (ℤ≥‘𝐶)) → ((Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) ↔ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶))))) |
| 16 | 10, 13, 15 | mp2an 692 | . . 3 ⊢ ((Ord ω ∧ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶))) ↔ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)))) |
| 17 | 5, 16 | mpbi 230 | . 2 ⊢ (ω = dom OrdIso( < , (ℤ≥‘𝐶)) ∧ 𝐺 = OrdIso( < , (ℤ≥‘𝐶))) |
| 18 | 17 | simpri 485 | 1 ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ↦ cmpt 5196 E cep 5545 Se wse 5597 We wwe 5598 dom cdm 5646 ↾ cres 5648 Ord word 6339 ‘cfv 6519 Isom wiso 6520 (class class class)co 7394 ωcom 7850 reccrdg 8386 OrdIsocoi 9480 1c1 11087 + caddc 11089 < clt 11226 ℤcz 12545 ℤ≥cuz 12809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-oi 9481 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 |
| This theorem is referenced by: ltbwe 21957 |
| Copyright terms: Public domain | W3C validator |