MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oieu Structured version   Visualization version   GIF version

Theorem oieu 9577
Description: Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oieu ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹𝐺 = 𝐹)))

Proof of Theorem oieu
StepHypRef Expression
1 simprr 773 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 Isom E , 𝑅 (𝐵, 𝐴))
2 oicl.1 . . . . . . . . 9 𝐹 = OrdIso(𝑅, 𝐴)
32ordtype 9570 . . . . . . . 8 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
43adantr 480 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
5 isocnv 7350 . . . . . . 7 (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹 Isom 𝑅, E (𝐴, dom 𝐹))
64, 5syl 17 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom 𝑅, E (𝐴, dom 𝐹))
7 isotr 7356 . . . . . 6 ((𝐺 Isom E , 𝑅 (𝐵, 𝐴) ∧ 𝐹 Isom 𝑅, E (𝐴, dom 𝐹)) → (𝐹𝐺) Isom E , E (𝐵, dom 𝐹))
81, 6, 7syl2anc 584 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐹𝐺) Isom E , E (𝐵, dom 𝐹))
9 simprl 771 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → Ord 𝐵)
102oicl 9567 . . . . . 6 Ord dom 𝐹
1110a1i 11 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → Ord dom 𝐹)
12 ordiso2 9553 . . . . 5 (((𝐹𝐺) Isom E , E (𝐵, dom 𝐹) ∧ Ord 𝐵 ∧ Ord dom 𝐹) → 𝐵 = dom 𝐹)
138, 9, 11, 12syl3anc 1370 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐵 = dom 𝐹)
14 ordwe 6399 . . . . . 6 (Ord 𝐵 → E We 𝐵)
1514ad2antrl 728 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → E We 𝐵)
16 epse 5671 . . . . . 6 E Se 𝐵
1716a1i 11 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → E Se 𝐵)
18 isoeq4 7340 . . . . . . 7 (𝐵 = dom 𝐹 → (𝐹 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
1913, 18syl 17 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐹 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
204, 19mpbird 257 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom E , 𝑅 (𝐵, 𝐴))
21 weisoeq 7375 . . . . 5 ((( E We 𝐵 ∧ E Se 𝐵) ∧ (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ∧ 𝐹 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 = 𝐹)
2215, 17, 1, 20, 21syl22anc 839 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 = 𝐹)
2313, 22jca 511 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐵 = dom 𝐹𝐺 = 𝐹))
2423ex 412 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) → (𝐵 = dom 𝐹𝐺 = 𝐹)))
253, 10jctil 519 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (Ord dom 𝐹𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
26 ordeq 6393 . . . . 5 (𝐵 = dom 𝐹 → (Ord 𝐵 ↔ Ord dom 𝐹))
2726adantr 480 . . . 4 ((𝐵 = dom 𝐹𝐺 = 𝐹) → (Ord 𝐵 ↔ Ord dom 𝐹))
28 isoeq4 7340 . . . . 5 (𝐵 = dom 𝐹 → (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐺 Isom E , 𝑅 (dom 𝐹, 𝐴)))
29 isoeq1 7337 . . . . 5 (𝐺 = 𝐹 → (𝐺 Isom E , 𝑅 (dom 𝐹, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
3028, 29sylan9bb 509 . . . 4 ((𝐵 = dom 𝐹𝐺 = 𝐹) → (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
3127, 30anbi12d 632 . . 3 ((𝐵 = dom 𝐹𝐺 = 𝐹) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (Ord dom 𝐹𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))))
3225, 31syl5ibrcom 247 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((𝐵 = dom 𝐹𝐺 = 𝐹) → (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))))
3324, 32impbid 212 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537   E cep 5588   Se wse 5639   We wwe 5640  ccnv 5688  dom cdm 5689  ccom 5693  Ord word 6385   Isom wiso 6564  OrdIsocoi 9547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-oi 9548
This theorem is referenced by:  hartogslem1  9580  cantnfp1lem3  9718  oemapwe  9732  cantnffval2  9733  om2uzoi  13993  om2noseqoi  28324
  Copyright terms: Public domain W3C validator