MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oieu Structured version   Visualization version   GIF version

Theorem oieu 9553
Description: Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oieu ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹𝐺 = 𝐹)))

Proof of Theorem oieu
StepHypRef Expression
1 simprr 772 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 Isom E , 𝑅 (𝐵, 𝐴))
2 oicl.1 . . . . . . . . 9 𝐹 = OrdIso(𝑅, 𝐴)
32ordtype 9546 . . . . . . . 8 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
43adantr 480 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
5 isocnv 7323 . . . . . . 7 (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹 Isom 𝑅, E (𝐴, dom 𝐹))
64, 5syl 17 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom 𝑅, E (𝐴, dom 𝐹))
7 isotr 7329 . . . . . 6 ((𝐺 Isom E , 𝑅 (𝐵, 𝐴) ∧ 𝐹 Isom 𝑅, E (𝐴, dom 𝐹)) → (𝐹𝐺) Isom E , E (𝐵, dom 𝐹))
81, 6, 7syl2anc 584 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐹𝐺) Isom E , E (𝐵, dom 𝐹))
9 simprl 770 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → Ord 𝐵)
102oicl 9543 . . . . . 6 Ord dom 𝐹
1110a1i 11 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → Ord dom 𝐹)
12 ordiso2 9529 . . . . 5 (((𝐹𝐺) Isom E , E (𝐵, dom 𝐹) ∧ Ord 𝐵 ∧ Ord dom 𝐹) → 𝐵 = dom 𝐹)
138, 9, 11, 12syl3anc 1373 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐵 = dom 𝐹)
14 ordwe 6365 . . . . . 6 (Ord 𝐵 → E We 𝐵)
1514ad2antrl 728 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → E We 𝐵)
16 epse 5636 . . . . . 6 E Se 𝐵
1716a1i 11 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → E Se 𝐵)
18 isoeq4 7313 . . . . . . 7 (𝐵 = dom 𝐹 → (𝐹 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
1913, 18syl 17 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐹 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
204, 19mpbird 257 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom E , 𝑅 (𝐵, 𝐴))
21 weisoeq 7348 . . . . 5 ((( E We 𝐵 ∧ E Se 𝐵) ∧ (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ∧ 𝐹 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 = 𝐹)
2215, 17, 1, 20, 21syl22anc 838 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 = 𝐹)
2313, 22jca 511 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐵 = dom 𝐹𝐺 = 𝐹))
2423ex 412 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) → (𝐵 = dom 𝐹𝐺 = 𝐹)))
253, 10jctil 519 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (Ord dom 𝐹𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
26 ordeq 6359 . . . . 5 (𝐵 = dom 𝐹 → (Ord 𝐵 ↔ Ord dom 𝐹))
2726adantr 480 . . . 4 ((𝐵 = dom 𝐹𝐺 = 𝐹) → (Ord 𝐵 ↔ Ord dom 𝐹))
28 isoeq4 7313 . . . . 5 (𝐵 = dom 𝐹 → (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐺 Isom E , 𝑅 (dom 𝐹, 𝐴)))
29 isoeq1 7310 . . . . 5 (𝐺 = 𝐹 → (𝐺 Isom E , 𝑅 (dom 𝐹, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
3028, 29sylan9bb 509 . . . 4 ((𝐵 = dom 𝐹𝐺 = 𝐹) → (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
3127, 30anbi12d 632 . . 3 ((𝐵 = dom 𝐹𝐺 = 𝐹) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (Ord dom 𝐹𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))))
3225, 31syl5ibrcom 247 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((𝐵 = dom 𝐹𝐺 = 𝐹) → (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))))
3324, 32impbid 212 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540   E cep 5552   Se wse 5604   We wwe 5605  ccnv 5653  dom cdm 5654  ccom 5658  Ord word 6351   Isom wiso 6532  OrdIsocoi 9523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-oi 9524
This theorem is referenced by:  hartogslem1  9556  cantnfp1lem3  9694  oemapwe  9708  cantnffval2  9709  om2uzoi  13973  om2noseqoi  28249
  Copyright terms: Public domain W3C validator