MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oieu Structured version   Visualization version   GIF version

Theorem oieu 8979
Description: Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oieu ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹𝐺 = 𝐹)))

Proof of Theorem oieu
StepHypRef Expression
1 simprr 772 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 Isom E , 𝑅 (𝐵, 𝐴))
2 oicl.1 . . . . . . . . 9 𝐹 = OrdIso(𝑅, 𝐴)
32ordtype 8972 . . . . . . . 8 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
43adantr 484 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
5 isocnv 7057 . . . . . . 7 (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹 Isom 𝑅, E (𝐴, dom 𝐹))
64, 5syl 17 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom 𝑅, E (𝐴, dom 𝐹))
7 isotr 7063 . . . . . 6 ((𝐺 Isom E , 𝑅 (𝐵, 𝐴) ∧ 𝐹 Isom 𝑅, E (𝐴, dom 𝐹)) → (𝐹𝐺) Isom E , E (𝐵, dom 𝐹))
81, 6, 7syl2anc 587 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐹𝐺) Isom E , E (𝐵, dom 𝐹))
9 simprl 770 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → Ord 𝐵)
102oicl 8969 . . . . . 6 Ord dom 𝐹
1110a1i 11 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → Ord dom 𝐹)
12 ordiso2 8955 . . . . 5 (((𝐹𝐺) Isom E , E (𝐵, dom 𝐹) ∧ Ord 𝐵 ∧ Ord dom 𝐹) → 𝐵 = dom 𝐹)
138, 9, 11, 12syl3anc 1368 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐵 = dom 𝐹)
14 ordwe 6177 . . . . . 6 (Ord 𝐵 → E We 𝐵)
1514ad2antrl 727 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → E We 𝐵)
16 epse 5511 . . . . . 6 E Se 𝐵
1716a1i 11 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → E Se 𝐵)
18 isoeq4 7047 . . . . . . 7 (𝐵 = dom 𝐹 → (𝐹 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
1913, 18syl 17 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐹 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
204, 19mpbird 260 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom E , 𝑅 (𝐵, 𝐴))
21 weisoeq 7082 . . . . 5 ((( E We 𝐵 ∧ E Se 𝐵) ∧ (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ∧ 𝐹 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 = 𝐹)
2215, 17, 1, 20, 21syl22anc 837 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 = 𝐹)
2313, 22jca 515 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐵 = dom 𝐹𝐺 = 𝐹))
2423ex 416 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) → (𝐵 = dom 𝐹𝐺 = 𝐹)))
253, 10jctil 523 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (Ord dom 𝐹𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
26 ordeq 6171 . . . . 5 (𝐵 = dom 𝐹 → (Ord 𝐵 ↔ Ord dom 𝐹))
2726adantr 484 . . . 4 ((𝐵 = dom 𝐹𝐺 = 𝐹) → (Ord 𝐵 ↔ Ord dom 𝐹))
28 isoeq4 7047 . . . . 5 (𝐵 = dom 𝐹 → (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐺 Isom E , 𝑅 (dom 𝐹, 𝐴)))
29 isoeq1 7044 . . . . 5 (𝐺 = 𝐹 → (𝐺 Isom E , 𝑅 (dom 𝐹, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
3028, 29sylan9bb 513 . . . 4 ((𝐵 = dom 𝐹𝐺 = 𝐹) → (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
3127, 30anbi12d 633 . . 3 ((𝐵 = dom 𝐹𝐺 = 𝐹) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (Ord dom 𝐹𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))))
3225, 31syl5ibrcom 250 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((𝐵 = dom 𝐹𝐺 = 𝐹) → (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))))
3324, 32impbid 215 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538   E cep 5437   Se wse 5485   We wwe 5486  ccnv 5527  dom cdm 5528  ccom 5532  Ord word 6163   Isom wiso 6329  OrdIsocoi 8949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-wrecs 7922  df-recs 7983  df-oi 8950
This theorem is referenced by:  hartogslem1  8982  cantnfp1lem3  9119  oemapwe  9133  cantnffval2  9134  om2uzoi  13306
  Copyright terms: Public domain W3C validator