MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oieu Structured version   Visualization version   GIF version

Theorem oieu 9564
Description: Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oieu ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹𝐺 = 𝐹)))

Proof of Theorem oieu
StepHypRef Expression
1 simprr 771 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 Isom E , 𝑅 (𝐵, 𝐴))
2 oicl.1 . . . . . . . . 9 𝐹 = OrdIso(𝑅, 𝐴)
32ordtype 9557 . . . . . . . 8 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
43adantr 479 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
5 isocnv 7337 . . . . . . 7 (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹 Isom 𝑅, E (𝐴, dom 𝐹))
64, 5syl 17 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom 𝑅, E (𝐴, dom 𝐹))
7 isotr 7343 . . . . . 6 ((𝐺 Isom E , 𝑅 (𝐵, 𝐴) ∧ 𝐹 Isom 𝑅, E (𝐴, dom 𝐹)) → (𝐹𝐺) Isom E , E (𝐵, dom 𝐹))
81, 6, 7syl2anc 582 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐹𝐺) Isom E , E (𝐵, dom 𝐹))
9 simprl 769 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → Ord 𝐵)
102oicl 9554 . . . . . 6 Ord dom 𝐹
1110a1i 11 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → Ord dom 𝐹)
12 ordiso2 9540 . . . . 5 (((𝐹𝐺) Isom E , E (𝐵, dom 𝐹) ∧ Ord 𝐵 ∧ Ord dom 𝐹) → 𝐵 = dom 𝐹)
138, 9, 11, 12syl3anc 1368 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐵 = dom 𝐹)
14 ordwe 6384 . . . . . 6 (Ord 𝐵 → E We 𝐵)
1514ad2antrl 726 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → E We 𝐵)
16 epse 5661 . . . . . 6 E Se 𝐵
1716a1i 11 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → E Se 𝐵)
18 isoeq4 7327 . . . . . . 7 (𝐵 = dom 𝐹 → (𝐹 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
1913, 18syl 17 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐹 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
204, 19mpbird 256 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom E , 𝑅 (𝐵, 𝐴))
21 weisoeq 7362 . . . . 5 ((( E We 𝐵 ∧ E Se 𝐵) ∧ (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ∧ 𝐹 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 = 𝐹)
2215, 17, 1, 20, 21syl22anc 837 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 = 𝐹)
2313, 22jca 510 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐵 = dom 𝐹𝐺 = 𝐹))
2423ex 411 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) → (𝐵 = dom 𝐹𝐺 = 𝐹)))
253, 10jctil 518 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (Ord dom 𝐹𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
26 ordeq 6378 . . . . 5 (𝐵 = dom 𝐹 → (Ord 𝐵 ↔ Ord dom 𝐹))
2726adantr 479 . . . 4 ((𝐵 = dom 𝐹𝐺 = 𝐹) → (Ord 𝐵 ↔ Ord dom 𝐹))
28 isoeq4 7327 . . . . 5 (𝐵 = dom 𝐹 → (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐺 Isom E , 𝑅 (dom 𝐹, 𝐴)))
29 isoeq1 7324 . . . . 5 (𝐺 = 𝐹 → (𝐺 Isom E , 𝑅 (dom 𝐹, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
3028, 29sylan9bb 508 . . . 4 ((𝐵 = dom 𝐹𝐺 = 𝐹) → (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
3127, 30anbi12d 630 . . 3 ((𝐵 = dom 𝐹𝐺 = 𝐹) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (Ord dom 𝐹𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))))
3225, 31syl5ibrcom 246 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((𝐵 = dom 𝐹𝐺 = 𝐹) → (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))))
3324, 32impbid 211 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533   E cep 5581   Se wse 5631   We wwe 5632  ccnv 5677  dom cdm 5678  ccom 5682  Ord word 6370   Isom wiso 6550  OrdIsocoi 9534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-oi 9535
This theorem is referenced by:  hartogslem1  9567  cantnfp1lem3  9705  oemapwe  9719  cantnffval2  9720  om2uzoi  13956  om2noseqoi  28226
  Copyright terms: Public domain W3C validator