MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oieu Structured version   Visualization version   GIF version

Theorem oieu 9492
Description: Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oieu ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹𝐺 = 𝐹)))

Proof of Theorem oieu
StepHypRef Expression
1 simprr 772 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 Isom E , 𝑅 (𝐵, 𝐴))
2 oicl.1 . . . . . . . . 9 𝐹 = OrdIso(𝑅, 𝐴)
32ordtype 9485 . . . . . . . 8 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
43adantr 480 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
5 isocnv 7305 . . . . . . 7 (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹 Isom 𝑅, E (𝐴, dom 𝐹))
64, 5syl 17 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom 𝑅, E (𝐴, dom 𝐹))
7 isotr 7311 . . . . . 6 ((𝐺 Isom E , 𝑅 (𝐵, 𝐴) ∧ 𝐹 Isom 𝑅, E (𝐴, dom 𝐹)) → (𝐹𝐺) Isom E , E (𝐵, dom 𝐹))
81, 6, 7syl2anc 584 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐹𝐺) Isom E , E (𝐵, dom 𝐹))
9 simprl 770 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → Ord 𝐵)
102oicl 9482 . . . . . 6 Ord dom 𝐹
1110a1i 11 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → Ord dom 𝐹)
12 ordiso2 9468 . . . . 5 (((𝐹𝐺) Isom E , E (𝐵, dom 𝐹) ∧ Ord 𝐵 ∧ Ord dom 𝐹) → 𝐵 = dom 𝐹)
138, 9, 11, 12syl3anc 1373 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐵 = dom 𝐹)
14 ordwe 6345 . . . . . 6 (Ord 𝐵 → E We 𝐵)
1514ad2antrl 728 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → E We 𝐵)
16 epse 5620 . . . . . 6 E Se 𝐵
1716a1i 11 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → E Se 𝐵)
18 isoeq4 7295 . . . . . . 7 (𝐵 = dom 𝐹 → (𝐹 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
1913, 18syl 17 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐹 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
204, 19mpbird 257 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐹 Isom E , 𝑅 (𝐵, 𝐴))
21 weisoeq 7330 . . . . 5 ((( E We 𝐵 ∧ E Se 𝐵) ∧ (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ∧ 𝐹 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 = 𝐹)
2215, 17, 1, 20, 21syl22anc 838 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → 𝐺 = 𝐹)
2313, 22jca 511 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))) → (𝐵 = dom 𝐹𝐺 = 𝐹))
2423ex 412 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) → (𝐵 = dom 𝐹𝐺 = 𝐹)))
253, 10jctil 519 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (Ord dom 𝐹𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
26 ordeq 6339 . . . . 5 (𝐵 = dom 𝐹 → (Ord 𝐵 ↔ Ord dom 𝐹))
2726adantr 480 . . . 4 ((𝐵 = dom 𝐹𝐺 = 𝐹) → (Ord 𝐵 ↔ Ord dom 𝐹))
28 isoeq4 7295 . . . . 5 (𝐵 = dom 𝐹 → (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐺 Isom E , 𝑅 (dom 𝐹, 𝐴)))
29 isoeq1 7292 . . . . 5 (𝐺 = 𝐹 → (𝐺 Isom E , 𝑅 (dom 𝐹, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
3028, 29sylan9bb 509 . . . 4 ((𝐵 = dom 𝐹𝐺 = 𝐹) → (𝐺 Isom E , 𝑅 (𝐵, 𝐴) ↔ 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)))
3127, 30anbi12d 632 . . 3 ((𝐵 = dom 𝐹𝐺 = 𝐹) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (Ord dom 𝐹𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))))
3225, 31syl5ibrcom 247 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((𝐵 = dom 𝐹𝐺 = 𝐹) → (Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴))))
3324, 32impbid 212 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → ((Ord 𝐵𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹𝐺 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540   E cep 5537   Se wse 5589   We wwe 5590  ccnv 5637  dom cdm 5638  ccom 5642  Ord word 6331   Isom wiso 6512  OrdIsocoi 9462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-oi 9463
This theorem is referenced by:  hartogslem1  9495  cantnfp1lem3  9633  oemapwe  9647  cantnffval2  9648  om2uzoi  13920  om2noseqoi  28197
  Copyright terms: Public domain W3C validator