![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oemapwe | Structured version Visualization version GIF version |
Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
Ref | Expression |
---|---|
oemapwe | ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑𝑜 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ On) | |
2 | cantnfs.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ On) | |
3 | oecl 7855 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜 𝐵) ∈ On) | |
4 | 1, 2, 3 | syl2anc 580 | . . . 4 ⊢ (𝜑 → (𝐴 ↑𝑜 𝐵) ∈ On) |
5 | eloni 5949 | . . . 4 ⊢ ((𝐴 ↑𝑜 𝐵) ∈ On → Ord (𝐴 ↑𝑜 𝐵)) | |
6 | ordwe 5952 | . . . 4 ⊢ (Ord (𝐴 ↑𝑜 𝐵) → E We (𝐴 ↑𝑜 𝐵)) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → E We (𝐴 ↑𝑜 𝐵)) |
8 | cantnfs.s | . . . . 5 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
9 | oemapval.t | . . . . 5 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
10 | 8, 1, 2, 9 | cantnf 8838 | . . . 4 ⊢ (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑𝑜 𝐵))) |
11 | isowe 6825 | . . . 4 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑𝑜 𝐵)) → (𝑇 We 𝑆 ↔ E We (𝐴 ↑𝑜 𝐵))) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑇 We 𝑆 ↔ E We (𝐴 ↑𝑜 𝐵))) |
13 | 7, 12 | mpbird 249 | . 2 ⊢ (𝜑 → 𝑇 We 𝑆) |
14 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord (𝐴 ↑𝑜 𝐵)) |
15 | isocnv 6806 | . . . . . 6 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑𝑜 𝐵)) → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑𝑜 𝐵), 𝑆)) | |
16 | 10, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑𝑜 𝐵), 𝑆)) |
17 | ovex 6908 | . . . . . . . . 9 ⊢ (𝐴 CNF 𝐵) ∈ V | |
18 | 17 | dmex 7332 | . . . . . . . 8 ⊢ dom (𝐴 CNF 𝐵) ∈ V |
19 | 8, 18 | eqeltri 2872 | . . . . . . 7 ⊢ 𝑆 ∈ V |
20 | exse 5274 | . . . . . . 7 ⊢ (𝑆 ∈ V → 𝑇 Se 𝑆) | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ 𝑇 Se 𝑆 |
22 | eqid 2797 | . . . . . . 7 ⊢ OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆) | |
23 | 22 | oieu 8684 | . . . . . 6 ⊢ ((𝑇 We 𝑆 ∧ 𝑇 Se 𝑆) → ((Ord (𝐴 ↑𝑜 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑𝑜 𝐵), 𝑆)) ↔ ((𝐴 ↑𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
24 | 13, 21, 23 | sylancl 581 | . . . . 5 ⊢ (𝜑 → ((Ord (𝐴 ↑𝑜 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑𝑜 𝐵), 𝑆)) ↔ ((𝐴 ↑𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
25 | 14, 16, 24 | mpbi2and 704 | . . . 4 ⊢ (𝜑 → ((𝐴 ↑𝑜 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))) |
26 | 25 | simpld 489 | . . 3 ⊢ (𝜑 → (𝐴 ↑𝑜 𝐵) = dom OrdIso(𝑇, 𝑆)) |
27 | 26 | eqcomd 2803 | . 2 ⊢ (𝜑 → dom OrdIso(𝑇, 𝑆) = (𝐴 ↑𝑜 𝐵)) |
28 | 13, 27 | jca 508 | 1 ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑𝑜 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ∃wrex 3088 Vcvv 3383 {copab 4903 E cep 5222 Se wse 5267 We wwe 5268 ◡ccnv 5309 dom cdm 5310 Ord word 5938 Oncon0 5939 ‘cfv 6099 Isom wiso 6100 (class class class)co 6876 ↑𝑜 coe 7796 OrdIsocoi 8654 CNF ccnf 8806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-seqom 7780 df-1o 7797 df-2o 7798 df-oadd 7801 df-omul 7802 df-oexp 7803 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-oi 8655 df-cnf 8807 |
This theorem is referenced by: cantnffval2 8840 wemapwe 8842 |
Copyright terms: Public domain | W3C validator |