Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oemapwe | Structured version Visualization version GIF version |
Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
Ref | Expression |
---|---|
oemapwe | ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ On) | |
2 | cantnfs.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ On) | |
3 | oecl 8264 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) | |
4 | 1, 2, 3 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝐴 ↑o 𝐵) ∈ On) |
5 | eloni 6223 | . . . 4 ⊢ ((𝐴 ↑o 𝐵) ∈ On → Ord (𝐴 ↑o 𝐵)) | |
6 | ordwe 6226 | . . . 4 ⊢ (Ord (𝐴 ↑o 𝐵) → E We (𝐴 ↑o 𝐵)) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → E We (𝐴 ↑o 𝐵)) |
8 | cantnfs.s | . . . . 5 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
9 | oemapval.t | . . . . 5 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
10 | 8, 1, 2, 9 | cantnf 9308 | . . . 4 ⊢ (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵))) |
11 | isowe 7158 | . . . 4 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵)) → (𝑇 We 𝑆 ↔ E We (𝐴 ↑o 𝐵))) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑇 We 𝑆 ↔ E We (𝐴 ↑o 𝐵))) |
13 | 7, 12 | mpbird 260 | . 2 ⊢ (𝜑 → 𝑇 We 𝑆) |
14 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord (𝐴 ↑o 𝐵)) |
15 | isocnv 7139 | . . . . . 6 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵)) → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) | |
16 | 10, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) |
17 | ovex 7246 | . . . . . . . . 9 ⊢ (𝐴 CNF 𝐵) ∈ V | |
18 | 17 | dmex 7689 | . . . . . . . 8 ⊢ dom (𝐴 CNF 𝐵) ∈ V |
19 | 8, 18 | eqeltri 2834 | . . . . . . 7 ⊢ 𝑆 ∈ V |
20 | exse 5514 | . . . . . . 7 ⊢ (𝑆 ∈ V → 𝑇 Se 𝑆) | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ 𝑇 Se 𝑆 |
22 | eqid 2737 | . . . . . . 7 ⊢ OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆) | |
23 | 22 | oieu 9155 | . . . . . 6 ⊢ ((𝑇 We 𝑆 ∧ 𝑇 Se 𝑆) → ((Ord (𝐴 ↑o 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) ↔ ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
24 | 13, 21, 23 | sylancl 589 | . . . . 5 ⊢ (𝜑 → ((Ord (𝐴 ↑o 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) ↔ ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
25 | 14, 16, 24 | mpbi2and 712 | . . . 4 ⊢ (𝜑 → ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))) |
26 | 25 | simpld 498 | . . 3 ⊢ (𝜑 → (𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆)) |
27 | 26 | eqcomd 2743 | . 2 ⊢ (𝜑 → dom OrdIso(𝑇, 𝑆) = (𝐴 ↑o 𝐵)) |
28 | 13, 27 | jca 515 | 1 ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 Vcvv 3408 {copab 5115 E cep 5459 Se wse 5507 We wwe 5508 ◡ccnv 5550 dom cdm 5551 Ord word 6212 Oncon0 6213 ‘cfv 6380 Isom wiso 6381 (class class class)co 7213 ↑o coe 8201 OrdIsocoi 9125 CNF ccnf 9276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-seqom 8184 df-1o 8202 df-2o 8203 df-oadd 8206 df-omul 8207 df-oexp 8208 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-oi 9126 df-cnf 9277 |
This theorem is referenced by: cantnffval2 9310 wemapwe 9312 |
Copyright terms: Public domain | W3C validator |