MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapwe Structured version   Visualization version   GIF version

Theorem oemapwe 9141
Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
oemapwe (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴o 𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oemapwe
StepHypRef Expression
1 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
2 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
3 oecl 8145 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
41, 2, 3syl2anc 587 . . . 4 (𝜑 → (𝐴o 𝐵) ∈ On)
5 eloni 6169 . . . 4 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
6 ordwe 6172 . . . 4 (Ord (𝐴o 𝐵) → E We (𝐴o 𝐵))
74, 5, 63syl 18 . . 3 (𝜑 → E We (𝐴o 𝐵))
8 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
9 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
108, 1, 2, 9cantnf 9140 . . . 4 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
11 isowe 7081 . . . 4 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)) → (𝑇 We 𝑆 ↔ E We (𝐴o 𝐵)))
1210, 11syl 17 . . 3 (𝜑 → (𝑇 We 𝑆 ↔ E We (𝐴o 𝐵)))
137, 12mpbird 260 . 2 (𝜑𝑇 We 𝑆)
144, 5syl 17 . . . . 5 (𝜑 → Ord (𝐴o 𝐵))
15 isocnv 7062 . . . . . 6 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)) → (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆))
1610, 15syl 17 . . . . 5 (𝜑(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆))
17 ovex 7168 . . . . . . . . 9 (𝐴 CNF 𝐵) ∈ V
1817dmex 7598 . . . . . . . 8 dom (𝐴 CNF 𝐵) ∈ V
198, 18eqeltri 2886 . . . . . . 7 𝑆 ∈ V
20 exse 5483 . . . . . . 7 (𝑆 ∈ V → 𝑇 Se 𝑆)
2119, 20ax-mp 5 . . . . . 6 𝑇 Se 𝑆
22 eqid 2798 . . . . . . 7 OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆)
2322oieu 8987 . . . . . 6 ((𝑇 We 𝑆𝑇 Se 𝑆) → ((Ord (𝐴o 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆)) ↔ ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2413, 21, 23sylancl 589 . . . . 5 (𝜑 → ((Ord (𝐴o 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆)) ↔ ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2514, 16, 24mpbi2and 711 . . . 4 (𝜑 → ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))
2625simpld 498 . . 3 (𝜑 → (𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆))
2726eqcomd 2804 . 2 (𝜑 → dom OrdIso(𝑇, 𝑆) = (𝐴o 𝐵))
2813, 27jca 515 1 (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  {copab 5092   E cep 5429   Se wse 5476   We wwe 5477  ccnv 5518  dom cdm 5519  Ord word 6158  Oncon0 6159  cfv 6324   Isom wiso 6325  (class class class)co 7135  o coe 8084  OrdIsocoi 8957   CNF ccnf 9108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-seqom 8067  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-oexp 8091  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-cnf 9109
This theorem is referenced by:  cantnffval2  9142  wemapwe  9144
  Copyright terms: Public domain W3C validator