MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapwe Structured version   Visualization version   GIF version

Theorem oemapwe 9309
Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
oemapwe (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴o 𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oemapwe
StepHypRef Expression
1 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
2 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
3 oecl 8264 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
41, 2, 3syl2anc 587 . . . 4 (𝜑 → (𝐴o 𝐵) ∈ On)
5 eloni 6223 . . . 4 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
6 ordwe 6226 . . . 4 (Ord (𝐴o 𝐵) → E We (𝐴o 𝐵))
74, 5, 63syl 18 . . 3 (𝜑 → E We (𝐴o 𝐵))
8 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
9 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
108, 1, 2, 9cantnf 9308 . . . 4 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
11 isowe 7158 . . . 4 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)) → (𝑇 We 𝑆 ↔ E We (𝐴o 𝐵)))
1210, 11syl 17 . . 3 (𝜑 → (𝑇 We 𝑆 ↔ E We (𝐴o 𝐵)))
137, 12mpbird 260 . 2 (𝜑𝑇 We 𝑆)
144, 5syl 17 . . . . 5 (𝜑 → Ord (𝐴o 𝐵))
15 isocnv 7139 . . . . . 6 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)) → (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆))
1610, 15syl 17 . . . . 5 (𝜑(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆))
17 ovex 7246 . . . . . . . . 9 (𝐴 CNF 𝐵) ∈ V
1817dmex 7689 . . . . . . . 8 dom (𝐴 CNF 𝐵) ∈ V
198, 18eqeltri 2834 . . . . . . 7 𝑆 ∈ V
20 exse 5514 . . . . . . 7 (𝑆 ∈ V → 𝑇 Se 𝑆)
2119, 20ax-mp 5 . . . . . 6 𝑇 Se 𝑆
22 eqid 2737 . . . . . . 7 OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆)
2322oieu 9155 . . . . . 6 ((𝑇 We 𝑆𝑇 Se 𝑆) → ((Ord (𝐴o 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆)) ↔ ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2413, 21, 23sylancl 589 . . . . 5 (𝜑 → ((Ord (𝐴o 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆)) ↔ ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2514, 16, 24mpbi2and 712 . . . 4 (𝜑 → ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))
2625simpld 498 . . 3 (𝜑 → (𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆))
2726eqcomd 2743 . 2 (𝜑 → dom OrdIso(𝑇, 𝑆) = (𝐴o 𝐵))
2813, 27jca 515 1 (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  Vcvv 3408  {copab 5115   E cep 5459   Se wse 5507   We wwe 5508  ccnv 5550  dom cdm 5551  Ord word 6212  Oncon0 6213  cfv 6380   Isom wiso 6381  (class class class)co 7213  o coe 8201  OrdIsocoi 9125   CNF ccnf 9276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-seqom 8184  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-oexp 8208  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-cnf 9277
This theorem is referenced by:  cantnffval2  9310  wemapwe  9312
  Copyright terms: Public domain W3C validator