MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapwe Structured version   Visualization version   GIF version

Theorem oemapwe 9732
Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
oemapwe (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴o 𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oemapwe
StepHypRef Expression
1 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
2 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
3 oecl 8574 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
41, 2, 3syl2anc 584 . . . 4 (𝜑 → (𝐴o 𝐵) ∈ On)
5 eloni 6396 . . . 4 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
6 ordwe 6399 . . . 4 (Ord (𝐴o 𝐵) → E We (𝐴o 𝐵))
74, 5, 63syl 18 . . 3 (𝜑 → E We (𝐴o 𝐵))
8 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
9 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
108, 1, 2, 9cantnf 9731 . . . 4 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
11 isowe 7369 . . . 4 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)) → (𝑇 We 𝑆 ↔ E We (𝐴o 𝐵)))
1210, 11syl 17 . . 3 (𝜑 → (𝑇 We 𝑆 ↔ E We (𝐴o 𝐵)))
137, 12mpbird 257 . 2 (𝜑𝑇 We 𝑆)
144, 5syl 17 . . . . 5 (𝜑 → Ord (𝐴o 𝐵))
15 isocnv 7350 . . . . . 6 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)) → (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆))
1610, 15syl 17 . . . . 5 (𝜑(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆))
17 ovex 7464 . . . . . . . . 9 (𝐴 CNF 𝐵) ∈ V
1817dmex 7932 . . . . . . . 8 dom (𝐴 CNF 𝐵) ∈ V
198, 18eqeltri 2835 . . . . . . 7 𝑆 ∈ V
20 exse 5649 . . . . . . 7 (𝑆 ∈ V → 𝑇 Se 𝑆)
2119, 20ax-mp 5 . . . . . 6 𝑇 Se 𝑆
22 eqid 2735 . . . . . . 7 OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆)
2322oieu 9577 . . . . . 6 ((𝑇 We 𝑆𝑇 Se 𝑆) → ((Ord (𝐴o 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆)) ↔ ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2413, 21, 23sylancl 586 . . . . 5 (𝜑 → ((Ord (𝐴o 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆)) ↔ ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2514, 16, 24mpbi2and 712 . . . 4 (𝜑 → ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))
2625simpld 494 . . 3 (𝜑 → (𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆))
2726eqcomd 2741 . 2 (𝜑 → dom OrdIso(𝑇, 𝑆) = (𝐴o 𝐵))
2813, 27jca 511 1 (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  {copab 5210   E cep 5588   Se wse 5639   We wwe 5640  ccnv 5688  dom cdm 5689  Ord word 6385  Oncon0 6386  cfv 6563   Isom wiso 6564  (class class class)co 7431  o coe 8504  OrdIsocoi 9547   CNF ccnf 9699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-seqom 8487  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-oexp 8511  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-oi 9548  df-cnf 9700
This theorem is referenced by:  cantnffval2  9733  wemapwe  9735
  Copyright terms: Public domain W3C validator