![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oemapwe | Structured version Visualization version GIF version |
Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
Ref | Expression |
---|---|
oemapwe | ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ On) | |
2 | cantnfs.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ On) | |
3 | oecl 8487 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) | |
4 | 1, 2, 3 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (𝐴 ↑o 𝐵) ∈ On) |
5 | eloni 6331 | . . . 4 ⊢ ((𝐴 ↑o 𝐵) ∈ On → Ord (𝐴 ↑o 𝐵)) | |
6 | ordwe 6334 | . . . 4 ⊢ (Ord (𝐴 ↑o 𝐵) → E We (𝐴 ↑o 𝐵)) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → E We (𝐴 ↑o 𝐵)) |
8 | cantnfs.s | . . . . 5 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
9 | oemapval.t | . . . . 5 ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
10 | 8, 1, 2, 9 | cantnf 9637 | . . . 4 ⊢ (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵))) |
11 | isowe 7298 | . . . 4 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵)) → (𝑇 We 𝑆 ↔ E We (𝐴 ↑o 𝐵))) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑇 We 𝑆 ↔ E We (𝐴 ↑o 𝐵))) |
13 | 7, 12 | mpbird 257 | . 2 ⊢ (𝜑 → 𝑇 We 𝑆) |
14 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord (𝐴 ↑o 𝐵)) |
15 | isocnv 7279 | . . . . . 6 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵)) → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) | |
16 | 10, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) |
17 | ovex 7394 | . . . . . . . . 9 ⊢ (𝐴 CNF 𝐵) ∈ V | |
18 | 17 | dmex 7852 | . . . . . . . 8 ⊢ dom (𝐴 CNF 𝐵) ∈ V |
19 | 8, 18 | eqeltri 2830 | . . . . . . 7 ⊢ 𝑆 ∈ V |
20 | exse 5600 | . . . . . . 7 ⊢ (𝑆 ∈ V → 𝑇 Se 𝑆) | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ 𝑇 Se 𝑆 |
22 | eqid 2733 | . . . . . . 7 ⊢ OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆) | |
23 | 22 | oieu 9483 | . . . . . 6 ⊢ ((𝑇 We 𝑆 ∧ 𝑇 Se 𝑆) → ((Ord (𝐴 ↑o 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) ↔ ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
24 | 13, 21, 23 | sylancl 587 | . . . . 5 ⊢ (𝜑 → ((Ord (𝐴 ↑o 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) ↔ ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
25 | 14, 16, 24 | mpbi2and 711 | . . . 4 ⊢ (𝜑 → ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))) |
26 | 25 | simpld 496 | . . 3 ⊢ (𝜑 → (𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆)) |
27 | 26 | eqcomd 2739 | . 2 ⊢ (𝜑 → dom OrdIso(𝑇, 𝑆) = (𝐴 ↑o 𝐵)) |
28 | 13, 27 | jca 513 | 1 ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 Vcvv 3447 {copab 5171 E cep 5540 Se wse 5590 We wwe 5591 ◡ccnv 5636 dom cdm 5637 Ord word 6320 Oncon0 6321 ‘cfv 6500 Isom wiso 6501 (class class class)co 7361 ↑o coe 8415 OrdIsocoi 9453 CNF ccnf 9605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-supp 8097 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-seqom 8398 df-1o 8416 df-2o 8417 df-oadd 8420 df-omul 8421 df-oexp 8422 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-fsupp 9312 df-oi 9454 df-cnf 9606 |
This theorem is referenced by: cantnffval2 9639 wemapwe 9641 |
Copyright terms: Public domain | W3C validator |