MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapso Structured version   Visualization version   GIF version

Theorem oemapso 9751
Description: The relation 𝑇 is a strict order on 𝑆 (a corollary of wemapso2 9622). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
oemapso (𝜑𝑇 Or 𝑆)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oemapso
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
2 eloni 6405 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
3 ordwe 6408 . . . . 5 (Ord 𝐵 → E We 𝐵)
4 weso 5691 . . . . 5 ( E We 𝐵 → E Or 𝐵)
51, 2, 3, 44syl 19 . . . 4 (𝜑 → E Or 𝐵)
6 cnvso 6319 . . . 4 ( E Or 𝐵 E Or 𝐵)
75, 6sylib 218 . . 3 (𝜑 E Or 𝐵)
8 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
9 eloni 6405 . . . 4 (𝐴 ∈ On → Ord 𝐴)
10 ordwe 6408 . . . 4 (Ord 𝐴 → E We 𝐴)
11 weso 5691 . . . 4 ( E We 𝐴 → E Or 𝐴)
128, 9, 10, 114syl 19 . . 3 (𝜑 → E Or 𝐴)
13 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
14 fvex 6933 . . . . . . . . 9 (𝑦𝑧) ∈ V
1514epeli 5601 . . . . . . . 8 ((𝑥𝑧) E (𝑦𝑧) ↔ (𝑥𝑧) ∈ (𝑦𝑧))
16 vex 3492 . . . . . . . . . . . 12 𝑤 ∈ V
17 vex 3492 . . . . . . . . . . . 12 𝑧 ∈ V
1816, 17brcnv 5907 . . . . . . . . . . 11 (𝑤 E 𝑧𝑧 E 𝑤)
19 epel 5602 . . . . . . . . . . 11 (𝑧 E 𝑤𝑧𝑤)
2018, 19bitri 275 . . . . . . . . . 10 (𝑤 E 𝑧𝑧𝑤)
2120imbi1i 349 . . . . . . . . 9 ((𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))
2221ralbii 3099 . . . . . . . 8 (∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))
2315, 22anbi12i 627 . . . . . . 7 (((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))))
2423rexbii 3100 . . . . . 6 (∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))))
2524opabbii 5233 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
2613, 25eqtr4i 2771 . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
27 breq1 5169 . . . . 5 (𝑔 = 𝑥 → (𝑔 finSupp ∅ ↔ 𝑥 finSupp ∅))
2827cbvrabv 3454 . . . 4 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}
2926, 28wemapso2 9622 . . 3 ((𝐵 ∈ On ∧ E Or 𝐵 ∧ E Or 𝐴) → 𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
301, 7, 12, 29syl3anc 1371 . 2 (𝜑𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
31 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
32 eqid 2740 . . . . 5 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
3332, 8, 1cantnfdm 9733 . . . 4 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
3431, 33eqtrid 2792 . . 3 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
35 soeq2 5630 . . 3 (𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} → (𝑇 Or 𝑆𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}))
3634, 35syl 17 . 2 (𝜑 → (𝑇 Or 𝑆𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}))
3730, 36mpbird 257 1 (𝜑𝑇 Or 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  c0 4352   class class class wbr 5166  {copab 5228   E cep 5598   Or wor 5606   We wwe 5651  ccnv 5699  dom cdm 5700  Ord word 6394  Oncon0 6395  cfv 6573  (class class class)co 7448  m cmap 8884   finSupp cfsupp 9431   CNF ccnf 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-map 8886  df-en 9004  df-fin 9007  df-fsupp 9432  df-cnf 9731
This theorem is referenced by:  cantnf  9762
  Copyright terms: Public domain W3C validator