MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapso Structured version   Visualization version   GIF version

Theorem oemapso 9642
Description: The relation 𝑇 is a strict order on 𝑆 (a corollary of wemapso2 9513). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
oemapso (𝜑𝑇 Or 𝑆)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oemapso
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
2 eloni 6345 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
3 ordwe 6348 . . . . 5 (Ord 𝐵 → E We 𝐵)
4 weso 5632 . . . . 5 ( E We 𝐵 → E Or 𝐵)
51, 2, 3, 44syl 19 . . . 4 (𝜑 → E Or 𝐵)
6 cnvso 6264 . . . 4 ( E Or 𝐵 E Or 𝐵)
75, 6sylib 218 . . 3 (𝜑 E Or 𝐵)
8 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
9 eloni 6345 . . . 4 (𝐴 ∈ On → Ord 𝐴)
10 ordwe 6348 . . . 4 (Ord 𝐴 → E We 𝐴)
11 weso 5632 . . . 4 ( E We 𝐴 → E Or 𝐴)
128, 9, 10, 114syl 19 . . 3 (𝜑 → E Or 𝐴)
13 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
14 fvex 6874 . . . . . . . . 9 (𝑦𝑧) ∈ V
1514epeli 5543 . . . . . . . 8 ((𝑥𝑧) E (𝑦𝑧) ↔ (𝑥𝑧) ∈ (𝑦𝑧))
16 vex 3454 . . . . . . . . . . . 12 𝑤 ∈ V
17 vex 3454 . . . . . . . . . . . 12 𝑧 ∈ V
1816, 17brcnv 5849 . . . . . . . . . . 11 (𝑤 E 𝑧𝑧 E 𝑤)
19 epel 5544 . . . . . . . . . . 11 (𝑧 E 𝑤𝑧𝑤)
2018, 19bitri 275 . . . . . . . . . 10 (𝑤 E 𝑧𝑧𝑤)
2120imbi1i 349 . . . . . . . . 9 ((𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))
2221ralbii 3076 . . . . . . . 8 (∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))
2315, 22anbi12i 628 . . . . . . 7 (((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))))
2423rexbii 3077 . . . . . 6 (∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))))
2524opabbii 5177 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
2613, 25eqtr4i 2756 . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
27 breq1 5113 . . . . 5 (𝑔 = 𝑥 → (𝑔 finSupp ∅ ↔ 𝑥 finSupp ∅))
2827cbvrabv 3419 . . . 4 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}
2926, 28wemapso2 9513 . . 3 ((𝐵 ∈ On ∧ E Or 𝐵 ∧ E Or 𝐴) → 𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
301, 7, 12, 29syl3anc 1373 . 2 (𝜑𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
31 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
32 eqid 2730 . . . . 5 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
3332, 8, 1cantnfdm 9624 . . . 4 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
3431, 33eqtrid 2777 . . 3 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
35 soeq2 5571 . . 3 (𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} → (𝑇 Or 𝑆𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}))
3634, 35syl 17 . 2 (𝜑 → (𝑇 Or 𝑆𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}))
3730, 36mpbird 257 1 (𝜑𝑇 Or 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  c0 4299   class class class wbr 5110  {copab 5172   E cep 5540   Or wor 5548   We wwe 5593  ccnv 5640  dom cdm 5641  Ord word 6334  Oncon0 6335  cfv 6514  (class class class)co 7390  m cmap 8802   finSupp cfsupp 9319   CNF ccnf 9621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419  df-1o 8437  df-map 8804  df-en 8922  df-fin 8925  df-fsupp 9320  df-cnf 9622
This theorem is referenced by:  cantnf  9653
  Copyright terms: Public domain W3C validator