MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapso Structured version   Visualization version   GIF version

Theorem oemapso 9572
Description: The relation 𝑇 is a strict order on 𝑆 (a corollary of wemapso2 9439). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
oemapso (𝜑𝑇 Or 𝑆)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oemapso
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
2 eloni 6316 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
3 ordwe 6319 . . . . 5 (Ord 𝐵 → E We 𝐵)
4 weso 5605 . . . . 5 ( E We 𝐵 → E Or 𝐵)
51, 2, 3, 44syl 19 . . . 4 (𝜑 → E Or 𝐵)
6 cnvso 6235 . . . 4 ( E Or 𝐵 E Or 𝐵)
75, 6sylib 218 . . 3 (𝜑 E Or 𝐵)
8 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
9 eloni 6316 . . . 4 (𝐴 ∈ On → Ord 𝐴)
10 ordwe 6319 . . . 4 (Ord 𝐴 → E We 𝐴)
11 weso 5605 . . . 4 ( E We 𝐴 → E Or 𝐴)
128, 9, 10, 114syl 19 . . 3 (𝜑 → E Or 𝐴)
13 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
14 fvex 6835 . . . . . . . . 9 (𝑦𝑧) ∈ V
1514epeli 5516 . . . . . . . 8 ((𝑥𝑧) E (𝑦𝑧) ↔ (𝑥𝑧) ∈ (𝑦𝑧))
16 vex 3440 . . . . . . . . . . . 12 𝑤 ∈ V
17 vex 3440 . . . . . . . . . . . 12 𝑧 ∈ V
1816, 17brcnv 5821 . . . . . . . . . . 11 (𝑤 E 𝑧𝑧 E 𝑤)
19 epel 5517 . . . . . . . . . . 11 (𝑧 E 𝑤𝑧𝑤)
2018, 19bitri 275 . . . . . . . . . 10 (𝑤 E 𝑧𝑧𝑤)
2120imbi1i 349 . . . . . . . . 9 ((𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))
2221ralbii 3078 . . . . . . . 8 (∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))
2315, 22anbi12i 628 . . . . . . 7 (((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))))
2423rexbii 3079 . . . . . 6 (∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))))
2524opabbii 5156 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
2613, 25eqtr4i 2757 . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
27 breq1 5092 . . . . 5 (𝑔 = 𝑥 → (𝑔 finSupp ∅ ↔ 𝑥 finSupp ∅))
2827cbvrabv 3405 . . . 4 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}
2926, 28wemapso2 9439 . . 3 ((𝐵 ∈ On ∧ E Or 𝐵 ∧ E Or 𝐴) → 𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
301, 7, 12, 29syl3anc 1373 . 2 (𝜑𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
31 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
32 eqid 2731 . . . . 5 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
3332, 8, 1cantnfdm 9554 . . . 4 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
3431, 33eqtrid 2778 . . 3 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
35 soeq2 5544 . . 3 (𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} → (𝑇 Or 𝑆𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}))
3634, 35syl 17 . 2 (𝜑 → (𝑇 Or 𝑆𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}))
3730, 36mpbird 257 1 (𝜑𝑇 Or 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  c0 4280   class class class wbr 5089  {copab 5151   E cep 5513   Or wor 5521   We wwe 5566  ccnv 5613  dom cdm 5614  Ord word 6305  Oncon0 6306  cfv 6481  (class class class)co 7346  m cmap 8750   finSupp cfsupp 9245   CNF ccnf 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-map 8752  df-en 8870  df-fin 8873  df-fsupp 9246  df-cnf 9552
This theorem is referenced by:  cantnf  9583
  Copyright terms: Public domain W3C validator