MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapso Structured version   Visualization version   GIF version

Theorem oemapso 9696
Description: The relation 𝑇 is a strict order on 𝑆 (a corollary of wemapso2 9567). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
oemapso (𝜑𝑇 Or 𝑆)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oemapso
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
2 eloni 6362 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
3 ordwe 6365 . . . . 5 (Ord 𝐵 → E We 𝐵)
4 weso 5645 . . . . 5 ( E We 𝐵 → E Or 𝐵)
51, 2, 3, 44syl 19 . . . 4 (𝜑 → E Or 𝐵)
6 cnvso 6277 . . . 4 ( E Or 𝐵 E Or 𝐵)
75, 6sylib 218 . . 3 (𝜑 E Or 𝐵)
8 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
9 eloni 6362 . . . 4 (𝐴 ∈ On → Ord 𝐴)
10 ordwe 6365 . . . 4 (Ord 𝐴 → E We 𝐴)
11 weso 5645 . . . 4 ( E We 𝐴 → E Or 𝐴)
128, 9, 10, 114syl 19 . . 3 (𝜑 → E Or 𝐴)
13 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
14 fvex 6889 . . . . . . . . 9 (𝑦𝑧) ∈ V
1514epeli 5555 . . . . . . . 8 ((𝑥𝑧) E (𝑦𝑧) ↔ (𝑥𝑧) ∈ (𝑦𝑧))
16 vex 3463 . . . . . . . . . . . 12 𝑤 ∈ V
17 vex 3463 . . . . . . . . . . . 12 𝑧 ∈ V
1816, 17brcnv 5862 . . . . . . . . . . 11 (𝑤 E 𝑧𝑧 E 𝑤)
19 epel 5556 . . . . . . . . . . 11 (𝑧 E 𝑤𝑧𝑤)
2018, 19bitri 275 . . . . . . . . . 10 (𝑤 E 𝑧𝑧𝑤)
2120imbi1i 349 . . . . . . . . 9 ((𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))
2221ralbii 3082 . . . . . . . 8 (∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))
2315, 22anbi12i 628 . . . . . . 7 (((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))))
2423rexbii 3083 . . . . . 6 (∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))))
2524opabbii 5186 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
2613, 25eqtr4i 2761 . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
27 breq1 5122 . . . . 5 (𝑔 = 𝑥 → (𝑔 finSupp ∅ ↔ 𝑥 finSupp ∅))
2827cbvrabv 3426 . . . 4 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑥 ∈ (𝐴m 𝐵) ∣ 𝑥 finSupp ∅}
2926, 28wemapso2 9567 . . 3 ((𝐵 ∈ On ∧ E Or 𝐵 ∧ E Or 𝐴) → 𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
301, 7, 12, 29syl3anc 1373 . 2 (𝜑𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
31 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
32 eqid 2735 . . . . 5 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
3332, 8, 1cantnfdm 9678 . . . 4 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
3431, 33eqtrid 2782 . . 3 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
35 soeq2 5583 . . 3 (𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} → (𝑇 Or 𝑆𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}))
3634, 35syl 17 . 2 (𝜑 → (𝑇 Or 𝑆𝑇 Or {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}))
3730, 36mpbird 257 1 (𝜑𝑇 Or 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  c0 4308   class class class wbr 5119  {copab 5181   E cep 5552   Or wor 5560   We wwe 5605  ccnv 5653  dom cdm 5654  Ord word 6351  Oncon0 6352  cfv 6531  (class class class)co 7405  m cmap 8840   finSupp cfsupp 9373   CNF ccnf 9675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seqom 8462  df-1o 8480  df-map 8842  df-en 8960  df-fin 8963  df-fsupp 9374  df-cnf 9676
This theorem is referenced by:  cantnf  9707
  Copyright terms: Public domain W3C validator