![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wepwso | Structured version Visualization version GIF version |
Description: A well-ordering induces a strict ordering on the power set. EDITORIAL: when well-orderings are set like, this can be strengthened to remove 𝐴 ∈ 𝑉. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
wepwso.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} |
Ref | Expression |
---|---|
wepwso | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 8647 | . . . . . 6 ⊢ 2o ∈ ω | |
2 | nnord 7867 | . . . . . 6 ⊢ (2o ∈ ω → Ord 2o) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Ord 2o |
4 | ordwe 6377 | . . . . 5 ⊢ (Ord 2o → E We 2o) | |
5 | weso 5667 | . . . . 5 ⊢ ( E We 2o → E Or 2o) | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ E Or 2o |
7 | eqid 2731 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
8 | 7 | wemapso 9552 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ E Or 2o) → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
9 | 6, 8 | mpan2 688 | . . 3 ⊢ (𝑅 We 𝐴 → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
10 | 9 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
11 | elex 3492 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
12 | wepwso.t | . . . . 5 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} | |
13 | eqid 2731 | . . . . 5 ⊢ (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) = (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) | |
14 | 12, 7, 13 | wepwsolem 42099 | . . . 4 ⊢ (𝐴 ∈ V → (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, 𝑇((2o ↑m 𝐴), 𝒫 𝐴)) |
15 | isoso 7348 | . . . 4 ⊢ ((𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, 𝑇((2o ↑m 𝐴), 𝒫 𝐴) → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) | |
16 | 11, 14, 15 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) |
17 | 16 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) |
18 | 10, 17 | mpbid 231 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 Vcvv 3473 𝒫 cpw 4602 {csn 4628 class class class wbr 5148 {copab 5210 ↦ cmpt 5231 E cep 5579 Or wor 5587 We wwe 5630 ◡ccnv 5675 “ cima 5679 Ord word 6363 ‘cfv 6543 Isom wiso 6544 (class class class)co 7412 ωcom 7859 1oc1o 8465 2oc2o 8466 ↑m cmap 8826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-1o 8472 df-2o 8473 df-map 8828 |
This theorem is referenced by: aomclem1 42111 |
Copyright terms: Public domain | W3C validator |