![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wepwso | Structured version Visualization version GIF version |
Description: A well-ordering induces a strict ordering on the power set. EDITORIAL: when well-orderings are set like, this can be strengthened to remove 𝐴 ∈ 𝑉. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
wepwso.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} |
Ref | Expression |
---|---|
wepwso | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 8679 | . . . . . 6 ⊢ 2o ∈ ω | |
2 | nnord 7895 | . . . . . 6 ⊢ (2o ∈ ω → Ord 2o) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Ord 2o |
4 | ordwe 6399 | . . . . 5 ⊢ (Ord 2o → E We 2o) | |
5 | weso 5680 | . . . . 5 ⊢ ( E We 2o → E Or 2o) | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ E Or 2o |
7 | eqid 2735 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
8 | 7 | wemapso 9589 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ E Or 2o) → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
9 | 6, 8 | mpan2 691 | . . 3 ⊢ (𝑅 We 𝐴 → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
10 | 9 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
11 | elex 3499 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
12 | wepwso.t | . . . . 5 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} | |
13 | eqid 2735 | . . . . 5 ⊢ (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) = (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) | |
14 | 12, 7, 13 | wepwsolem 43031 | . . . 4 ⊢ (𝐴 ∈ V → (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, 𝑇((2o ↑m 𝐴), 𝒫 𝐴)) |
15 | isoso 7368 | . . . 4 ⊢ ((𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, 𝑇((2o ↑m 𝐴), 𝒫 𝐴) → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) | |
16 | 11, 14, 15 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) |
17 | 16 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) |
18 | 10, 17 | mpbid 232 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 Vcvv 3478 𝒫 cpw 4605 {csn 4631 class class class wbr 5148 {copab 5210 ↦ cmpt 5231 E cep 5588 Or wor 5596 We wwe 5640 ◡ccnv 5688 “ cima 5692 Ord word 6385 ‘cfv 6563 Isom wiso 6564 (class class class)co 7431 ωcom 7887 1oc1o 8498 2oc2o 8499 ↑m cmap 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-1o 8505 df-2o 8506 df-map 8867 |
This theorem is referenced by: aomclem1 43043 |
Copyright terms: Public domain | W3C validator |