Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wepwso Structured version   Visualization version   GIF version

Theorem wepwso 40784
Description: A well-ordering induces a strict ordering on the power set. EDITORIAL: when well-orderings are set like, this can be strengthened to remove 𝐴𝑉. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
wepwso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑧𝑦 ∧ ¬ 𝑧𝑥) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑤𝑥𝑤𝑦)))}
Assertion
Ref Expression
wepwso ((𝐴𝑉𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴)
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧,𝑤   𝑥,𝐴,𝑦,𝑧,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wepwso
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2onn 8433 . . . . . 6 2o ∈ ω
2 nnord 7695 . . . . . 6 (2o ∈ ω → Ord 2o)
31, 2ax-mp 5 . . . . 5 Ord 2o
4 ordwe 6264 . . . . 5 (Ord 2o → E We 2o)
5 weso 5571 . . . . 5 ( E We 2o → E Or 2o)
63, 4, 5mp2b 10 . . . 4 E Or 2o
7 eqid 2738 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
87wemapso 9240 . . . 4 ((𝑅 We 𝐴 ∧ E Or 2o) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴))
96, 8mpan2 687 . . 3 (𝑅 We 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴))
109adantl 481 . 2 ((𝐴𝑉𝑅 We 𝐴) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴))
11 elex 3440 . . . 4 (𝐴𝑉𝐴 ∈ V)
12 wepwso.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑧𝑦 ∧ ¬ 𝑧𝑥) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑤𝑥𝑤𝑦)))}
13 eqid 2738 . . . . 5 (𝑎 ∈ (2om 𝐴) ↦ (𝑎 “ {1o})) = (𝑎 ∈ (2om 𝐴) ↦ (𝑎 “ {1o}))
1412, 7, 13wepwsolem 40783 . . . 4 (𝐴 ∈ V → (𝑎 ∈ (2om 𝐴) ↦ (𝑎 “ {1o})) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}, 𝑇((2om 𝐴), 𝒫 𝐴))
15 isoso 7199 . . . 4 ((𝑎 ∈ (2om 𝐴) ↦ (𝑎 “ {1o})) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}, 𝑇((2om 𝐴), 𝒫 𝐴) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴) ↔ 𝑇 Or 𝒫 𝐴))
1611, 14, 153syl 18 . . 3 (𝐴𝑉 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴) ↔ 𝑇 Or 𝒫 𝐴))
1716adantr 480 . 2 ((𝐴𝑉𝑅 We 𝐴) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴) ↔ 𝑇 Or 𝒫 𝐴))
1810, 17mpbid 231 1 ((𝐴𝑉𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  {copab 5132  cmpt 5153   E cep 5485   Or wor 5493   We wwe 5534  ccnv 5579  cima 5583  Ord word 6250  cfv 6418   Isom wiso 6419  (class class class)co 7255  ωcom 7687  1oc1o 8260  2oc2o 8261  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-2o 8268  df-map 8575
This theorem is referenced by:  aomclem1  40795
  Copyright terms: Public domain W3C validator