Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wepwso | Structured version Visualization version GIF version |
Description: A well-ordering induces a strict ordering on the power set. EDITORIAL: when well-orderings are set like, this can be strengthened to remove 𝐴 ∈ 𝑉. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
wepwso.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} |
Ref | Expression |
---|---|
wepwso | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 8472 | . . . . . 6 ⊢ 2o ∈ ω | |
2 | nnord 7720 | . . . . . 6 ⊢ (2o ∈ ω → Ord 2o) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Ord 2o |
4 | ordwe 6279 | . . . . 5 ⊢ (Ord 2o → E We 2o) | |
5 | weso 5580 | . . . . 5 ⊢ ( E We 2o → E Or 2o) | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ E Or 2o |
7 | eqid 2738 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
8 | 7 | wemapso 9310 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ E Or 2o) → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
9 | 6, 8 | mpan2 688 | . . 3 ⊢ (𝑅 We 𝐴 → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
10 | 9 | adantl 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
11 | elex 3450 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
12 | wepwso.t | . . . . 5 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} | |
13 | eqid 2738 | . . . . 5 ⊢ (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) = (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) | |
14 | 12, 7, 13 | wepwsolem 40867 | . . . 4 ⊢ (𝐴 ∈ V → (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, 𝑇((2o ↑m 𝐴), 𝒫 𝐴)) |
15 | isoso 7219 | . . . 4 ⊢ ((𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, 𝑇((2o ↑m 𝐴), 𝒫 𝐴) → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) | |
16 | 11, 14, 15 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) |
17 | 16 | adantr 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) |
18 | 10, 17 | mpbid 231 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 𝒫 cpw 4533 {csn 4561 class class class wbr 5074 {copab 5136 ↦ cmpt 5157 E cep 5494 Or wor 5502 We wwe 5543 ◡ccnv 5588 “ cima 5592 Ord word 6265 ‘cfv 6433 Isom wiso 6434 (class class class)co 7275 ωcom 7712 1oc1o 8290 2oc2o 8291 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-2o 8298 df-map 8617 |
This theorem is referenced by: aomclem1 40879 |
Copyright terms: Public domain | W3C validator |