![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wepwso | Structured version Visualization version GIF version |
Description: A well-ordering induces a strict ordering on the power set. EDITORIAL: when well-orderings are set like, this can be strengthened to remove 𝐴 ∈ 𝑉. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
wepwso.t | ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} |
Ref | Expression |
---|---|
wepwso | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 8637 | . . . . . 6 ⊢ 2o ∈ ω | |
2 | nnord 7859 | . . . . . 6 ⊢ (2o ∈ ω → Ord 2o) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Ord 2o |
4 | ordwe 6374 | . . . . 5 ⊢ (Ord 2o → E We 2o) | |
5 | weso 5666 | . . . . 5 ⊢ ( E We 2o → E Or 2o) | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ E Or 2o |
7 | eqid 2732 | . . . . 5 ⊢ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
8 | 7 | wemapso 9542 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ E Or 2o) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
9 | 6, 8 | mpan2 689 | . . 3 ⊢ (𝑅 We 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
10 | 9 | adantl 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴)) |
11 | elex 3492 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
12 | wepwso.t | . . . . 5 ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} | |
13 | eqid 2732 | . . . . 5 ⊢ (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) = (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) | |
14 | 12, 7, 13 | wepwsolem 41769 | . . . 4 ⊢ (𝐴 ∈ V → (𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, 𝑇((2o ↑m 𝐴), 𝒫 𝐴)) |
15 | isoso 7341 | . . . 4 ⊢ ((𝑎 ∈ (2o ↑m 𝐴) ↦ (◡𝑎 “ {1o})) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, 𝑇((2o ↑m 𝐴), 𝒫 𝐴) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) | |
16 | 11, 14, 15 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) |
17 | 16 | adantr 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2o ↑m 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) |
18 | 10, 17 | mpbid 231 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 𝒫 cpw 4601 {csn 4627 class class class wbr 5147 {copab 5209 ↦ cmpt 5230 E cep 5578 Or wor 5586 We wwe 5629 ◡ccnv 5674 “ cima 5678 Ord word 6360 ‘cfv 6540 Isom wiso 6541 (class class class)co 7405 ωcom 7851 1oc1o 8455 2oc2o 8456 ↑m cmap 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-1o 8462 df-2o 8463 df-map 8818 |
This theorem is referenced by: aomclem1 41781 |
Copyright terms: Public domain | W3C validator |