Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wepwso Structured version   Visualization version   GIF version

Theorem wepwso 40868
Description: A well-ordering induces a strict ordering on the power set. EDITORIAL: when well-orderings are set like, this can be strengthened to remove 𝐴𝑉. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
wepwso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑧𝑦 ∧ ¬ 𝑧𝑥) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑤𝑥𝑤𝑦)))}
Assertion
Ref Expression
wepwso ((𝐴𝑉𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴)
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧,𝑤   𝑥,𝐴,𝑦,𝑧,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wepwso
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2onn 8472 . . . . . 6 2o ∈ ω
2 nnord 7720 . . . . . 6 (2o ∈ ω → Ord 2o)
31, 2ax-mp 5 . . . . 5 Ord 2o
4 ordwe 6279 . . . . 5 (Ord 2o → E We 2o)
5 weso 5580 . . . . 5 ( E We 2o → E Or 2o)
63, 4, 5mp2b 10 . . . 4 E Or 2o
7 eqid 2738 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
87wemapso 9310 . . . 4 ((𝑅 We 𝐴 ∧ E Or 2o) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴))
96, 8mpan2 688 . . 3 (𝑅 We 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴))
109adantl 482 . 2 ((𝐴𝑉𝑅 We 𝐴) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴))
11 elex 3450 . . . 4 (𝐴𝑉𝐴 ∈ V)
12 wepwso.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑧𝑦 ∧ ¬ 𝑧𝑥) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑤𝑥𝑤𝑦)))}
13 eqid 2738 . . . . 5 (𝑎 ∈ (2om 𝐴) ↦ (𝑎 “ {1o})) = (𝑎 ∈ (2om 𝐴) ↦ (𝑎 “ {1o}))
1412, 7, 13wepwsolem 40867 . . . 4 (𝐴 ∈ V → (𝑎 ∈ (2om 𝐴) ↦ (𝑎 “ {1o})) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}, 𝑇((2om 𝐴), 𝒫 𝐴))
15 isoso 7219 . . . 4 ((𝑎 ∈ (2om 𝐴) ↦ (𝑎 “ {1o})) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}, 𝑇((2om 𝐴), 𝒫 𝐴) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴) ↔ 𝑇 Or 𝒫 𝐴))
1611, 14, 153syl 18 . . 3 (𝐴𝑉 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴) ↔ 𝑇 Or 𝒫 𝐴))
1716adantr 481 . 2 ((𝐴𝑉𝑅 We 𝐴) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))} Or (2om 𝐴) ↔ 𝑇 Or 𝒫 𝐴))
1810, 17mpbid 231 1 ((𝐴𝑉𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  {copab 5136  cmpt 5157   E cep 5494   Or wor 5502   We wwe 5543  ccnv 5588  cima 5592  Ord word 6265  cfv 6433   Isom wiso 6434  (class class class)co 7275  ωcom 7712  1oc1o 8290  2oc2o 8291  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-2o 8298  df-map 8617
This theorem is referenced by:  aomclem1  40879
  Copyright terms: Public domain W3C validator