| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oiid | Structured version Visualization version GIF version | ||
| Description: The order type of an ordinal under the ∈ order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| oiid | ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordwe 6326 | . 2 ⊢ (Ord 𝐴 → E We 𝐴) | |
| 2 | epse 5603 | . . 3 ⊢ E Se 𝐴 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (Ord 𝐴 → E Se 𝐴) |
| 4 | eqid 2733 | . . . . . 6 ⊢ OrdIso( E , 𝐴) = OrdIso( E , 𝐴) | |
| 5 | 4 | oiiso2 9426 | . . . . 5 ⊢ (( E We 𝐴 ∧ E Se 𝐴) → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴))) |
| 6 | 1, 2, 5 | sylancl 586 | . . . 4 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴))) |
| 7 | ordsson 7724 | . . . . . 6 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 8 | 4 | oismo 9435 | . . . . . 6 ⊢ (𝐴 ⊆ On → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴)) |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (Ord 𝐴 → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴)) |
| 10 | isoeq5 7263 | . . . . 5 ⊢ (ran OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))) | |
| 11 | 9, 10 | simpl2im 503 | . . . 4 ⊢ (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))) |
| 12 | 6, 11 | mpbid 232 | . . 3 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)) |
| 13 | 4 | oicl 9424 | . . . . . 6 ⊢ Ord dom OrdIso( E , 𝐴) |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (Ord 𝐴 → Ord dom OrdIso( E , 𝐴)) |
| 15 | id 22 | . . . . 5 ⊢ (Ord 𝐴 → Ord 𝐴) | |
| 16 | ordiso2 9410 | . . . . 5 ⊢ ((OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ∧ Ord dom OrdIso( E , 𝐴) ∧ Ord 𝐴) → dom OrdIso( E , 𝐴) = 𝐴) | |
| 17 | 12, 14, 15, 16 | syl3anc 1373 | . . . 4 ⊢ (Ord 𝐴 → dom OrdIso( E , 𝐴) = 𝐴) |
| 18 | isoeq4 7262 | . . . 4 ⊢ (dom OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))) |
| 20 | 12, 19 | mpbid 232 | . 2 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) |
| 21 | weniso 7296 | . 2 ⊢ (( E We 𝐴 ∧ E Se 𝐴 ∧ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) | |
| 22 | 1, 3, 20, 21 | syl3anc 1373 | 1 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ⊆ wss 3898 I cid 5515 E cep 5520 Se wse 5572 We wwe 5573 dom cdm 5621 ran crn 5622 ↾ cres 5623 Ord word 6312 Oncon0 6313 Isom wiso 6489 Smo wsmo 8273 OrdIsocoi 9404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-smo 8274 df-recs 8299 df-oi 9405 |
| This theorem is referenced by: hsmexlem5 10330 |
| Copyright terms: Public domain | W3C validator |