| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oiid | Structured version Visualization version GIF version | ||
| Description: The order type of an ordinal under the ∈ order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| oiid | ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordwe 6345 | . 2 ⊢ (Ord 𝐴 → E We 𝐴) | |
| 2 | epse 5620 | . . 3 ⊢ E Se 𝐴 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (Ord 𝐴 → E Se 𝐴) |
| 4 | eqid 2729 | . . . . . 6 ⊢ OrdIso( E , 𝐴) = OrdIso( E , 𝐴) | |
| 5 | 4 | oiiso2 9484 | . . . . 5 ⊢ (( E We 𝐴 ∧ E Se 𝐴) → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴))) |
| 6 | 1, 2, 5 | sylancl 586 | . . . 4 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴))) |
| 7 | ordsson 7759 | . . . . . 6 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 8 | 4 | oismo 9493 | . . . . . 6 ⊢ (𝐴 ⊆ On → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴)) |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (Ord 𝐴 → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴)) |
| 10 | isoeq5 7296 | . . . . 5 ⊢ (ran OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))) | |
| 11 | 9, 10 | simpl2im 503 | . . . 4 ⊢ (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))) |
| 12 | 6, 11 | mpbid 232 | . . 3 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)) |
| 13 | 4 | oicl 9482 | . . . . . 6 ⊢ Ord dom OrdIso( E , 𝐴) |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (Ord 𝐴 → Ord dom OrdIso( E , 𝐴)) |
| 15 | id 22 | . . . . 5 ⊢ (Ord 𝐴 → Ord 𝐴) | |
| 16 | ordiso2 9468 | . . . . 5 ⊢ ((OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ∧ Ord dom OrdIso( E , 𝐴) ∧ Ord 𝐴) → dom OrdIso( E , 𝐴) = 𝐴) | |
| 17 | 12, 14, 15, 16 | syl3anc 1373 | . . . 4 ⊢ (Ord 𝐴 → dom OrdIso( E , 𝐴) = 𝐴) |
| 18 | isoeq4 7295 | . . . 4 ⊢ (dom OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))) |
| 20 | 12, 19 | mpbid 232 | . 2 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) |
| 21 | weniso 7329 | . 2 ⊢ (( E We 𝐴 ∧ E Se 𝐴 ∧ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) | |
| 22 | 1, 3, 20, 21 | syl3anc 1373 | 1 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3914 I cid 5532 E cep 5537 Se wse 5589 We wwe 5590 dom cdm 5638 ran crn 5639 ↾ cres 5640 Ord word 6331 Oncon0 6332 Isom wiso 6512 Smo wsmo 8314 OrdIsocoi 9462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-smo 8315 df-recs 8340 df-oi 9463 |
| This theorem is referenced by: hsmexlem5 10383 |
| Copyright terms: Public domain | W3C validator |