Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oiid | Structured version Visualization version GIF version |
Description: The order type of an ordinal under the ∈ order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
oiid | ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordwe 6279 | . 2 ⊢ (Ord 𝐴 → E We 𝐴) | |
2 | epse 5572 | . . 3 ⊢ E Se 𝐴 | |
3 | 2 | a1i 11 | . 2 ⊢ (Ord 𝐴 → E Se 𝐴) |
4 | eqid 2738 | . . . . . 6 ⊢ OrdIso( E , 𝐴) = OrdIso( E , 𝐴) | |
5 | 4 | oiiso2 9290 | . . . . 5 ⊢ (( E We 𝐴 ∧ E Se 𝐴) → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴))) |
6 | 1, 2, 5 | sylancl 586 | . . . 4 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴))) |
7 | ordsson 7633 | . . . . . 6 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
8 | 4 | oismo 9299 | . . . . . 6 ⊢ (𝐴 ⊆ On → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴)) |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (Ord 𝐴 → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴)) |
10 | isoeq5 7192 | . . . . 5 ⊢ (ran OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))) | |
11 | 9, 10 | simpl2im 504 | . . . 4 ⊢ (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))) |
12 | 6, 11 | mpbid 231 | . . 3 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)) |
13 | 4 | oicl 9288 | . . . . . 6 ⊢ Ord dom OrdIso( E , 𝐴) |
14 | 13 | a1i 11 | . . . . 5 ⊢ (Ord 𝐴 → Ord dom OrdIso( E , 𝐴)) |
15 | id 22 | . . . . 5 ⊢ (Ord 𝐴 → Ord 𝐴) | |
16 | ordiso2 9274 | . . . . 5 ⊢ ((OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ∧ Ord dom OrdIso( E , 𝐴) ∧ Ord 𝐴) → dom OrdIso( E , 𝐴) = 𝐴) | |
17 | 12, 14, 15, 16 | syl3anc 1370 | . . . 4 ⊢ (Ord 𝐴 → dom OrdIso( E , 𝐴) = 𝐴) |
18 | isoeq4 7191 | . . . 4 ⊢ (dom OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))) |
20 | 12, 19 | mpbid 231 | . 2 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) |
21 | weniso 7225 | . 2 ⊢ (( E We 𝐴 ∧ E Se 𝐴 ∧ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) | |
22 | 1, 3, 20, 21 | syl3anc 1370 | 1 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ⊆ wss 3887 I cid 5488 E cep 5494 Se wse 5542 We wwe 5543 dom cdm 5589 ran crn 5590 ↾ cres 5591 Ord word 6265 Oncon0 6266 Isom wiso 6434 Smo wsmo 8176 OrdIsocoi 9268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-smo 8177 df-recs 8202 df-oi 9269 |
This theorem is referenced by: hsmexlem5 10186 |
Copyright terms: Public domain | W3C validator |