MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiid Structured version   Visualization version   GIF version

Theorem oiid 8735
Description: The order type of an ordinal under the order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
oiid (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴))

Proof of Theorem oiid
StepHypRef Expression
1 ordwe 5989 . 2 (Ord 𝐴 → E We 𝐴)
2 epse 5338 . . 3 E Se 𝐴
32a1i 11 . 2 (Ord 𝐴 → E Se 𝐴)
4 eqid 2778 . . . . . 6 OrdIso( E , 𝐴) = OrdIso( E , 𝐴)
54oiiso2 8725 . . . . 5 (( E We 𝐴 ∧ E Se 𝐴) → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)))
61, 2, 5sylancl 580 . . . 4 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)))
7 ordsson 7267 . . . . . 6 (Ord 𝐴𝐴 ⊆ On)
84oismo 8734 . . . . . 6 (𝐴 ⊆ On → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴))
97, 8syl 17 . . . . 5 (Ord 𝐴 → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴))
10 isoeq5 6843 . . . . 5 (ran OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)))
119, 10simpl2im 499 . . . 4 (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)))
126, 11mpbid 224 . . 3 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))
134oicl 8723 . . . . . 6 Ord dom OrdIso( E , 𝐴)
1413a1i 11 . . . . 5 (Ord 𝐴 → Ord dom OrdIso( E , 𝐴))
15 id 22 . . . . 5 (Ord 𝐴 → Ord 𝐴)
16 ordiso2 8709 . . . . 5 ((OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ∧ Ord dom OrdIso( E , 𝐴) ∧ Ord 𝐴) → dom OrdIso( E , 𝐴) = 𝐴)
1712, 14, 15, 16syl3anc 1439 . . . 4 (Ord 𝐴 → dom OrdIso( E , 𝐴) = 𝐴)
18 isoeq4 6842 . . . 4 (dom OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)))
1917, 18syl 17 . . 3 (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)))
2012, 19mpbid 224 . 2 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))
21 weniso 6876 . 2 (( E We 𝐴 ∧ E Se 𝐴 ∧ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) → OrdIso( E , 𝐴) = ( I ↾ 𝐴))
221, 3, 20, 21syl3anc 1439 1 (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wss 3792   I cid 5260   E cep 5265   Se wse 5312   We wwe 5313  dom cdm 5355  ran crn 5356  cres 5357  Ord word 5975  Oncon0 5976   Isom wiso 6136  Smo wsmo 7725  OrdIsocoi 8703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-wrecs 7689  df-smo 7726  df-recs 7751  df-oi 8704
This theorem is referenced by:  hsmexlem5  9587
  Copyright terms: Public domain W3C validator