Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiid Structured version   Visualization version   GIF version

Theorem oiid 8991
 Description: The order type of an ordinal under the ∈ order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
oiid (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴))

Proof of Theorem oiid
StepHypRef Expression
1 ordwe 6172 . 2 (Ord 𝐴 → E We 𝐴)
2 epse 5502 . . 3 E Se 𝐴
32a1i 11 . 2 (Ord 𝐴 → E Se 𝐴)
4 eqid 2798 . . . . . 6 OrdIso( E , 𝐴) = OrdIso( E , 𝐴)
54oiiso2 8981 . . . . 5 (( E We 𝐴 ∧ E Se 𝐴) → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)))
61, 2, 5sylancl 589 . . . 4 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)))
7 ordsson 7486 . . . . . 6 (Ord 𝐴𝐴 ⊆ On)
84oismo 8990 . . . . . 6 (𝐴 ⊆ On → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴))
97, 8syl 17 . . . . 5 (Ord 𝐴 → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴))
10 isoeq5 7053 . . . . 5 (ran OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)))
119, 10simpl2im 507 . . . 4 (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)))
126, 11mpbid 235 . . 3 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))
134oicl 8979 . . . . . 6 Ord dom OrdIso( E , 𝐴)
1413a1i 11 . . . . 5 (Ord 𝐴 → Ord dom OrdIso( E , 𝐴))
15 id 22 . . . . 5 (Ord 𝐴 → Ord 𝐴)
16 ordiso2 8965 . . . . 5 ((OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ∧ Ord dom OrdIso( E , 𝐴) ∧ Ord 𝐴) → dom OrdIso( E , 𝐴) = 𝐴)
1712, 14, 15, 16syl3anc 1368 . . . 4 (Ord 𝐴 → dom OrdIso( E , 𝐴) = 𝐴)
18 isoeq4 7052 . . . 4 (dom OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)))
1917, 18syl 17 . . 3 (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)))
2012, 19mpbid 235 . 2 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))
21 weniso 7086 . 2 (( E We 𝐴 ∧ E Se 𝐴 ∧ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) → OrdIso( E , 𝐴) = ( I ↾ 𝐴))
221, 3, 20, 21syl3anc 1368 1 (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ⊆ wss 3881   I cid 5424   E cep 5429   Se wse 5476   We wwe 5477  dom cdm 5519  ran crn 5520   ↾ cres 5521  Ord word 6158  Oncon0 6159   Isom wiso 6325  Smo wsmo 7967  OrdIsocoi 8959 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-wrecs 7932  df-smo 7968  df-recs 7993  df-oi 8960 This theorem is referenced by:  hsmexlem5  9843
 Copyright terms: Public domain W3C validator