| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oiid | Structured version Visualization version GIF version | ||
| Description: The order type of an ordinal under the ∈ order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| oiid | ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordwe 6365 | . 2 ⊢ (Ord 𝐴 → E We 𝐴) | |
| 2 | epse 5636 | . . 3 ⊢ E Se 𝐴 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (Ord 𝐴 → E Se 𝐴) |
| 4 | eqid 2735 | . . . . . 6 ⊢ OrdIso( E , 𝐴) = OrdIso( E , 𝐴) | |
| 5 | 4 | oiiso2 9545 | . . . . 5 ⊢ (( E We 𝐴 ∧ E Se 𝐴) → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴))) |
| 6 | 1, 2, 5 | sylancl 586 | . . . 4 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴))) |
| 7 | ordsson 7777 | . . . . . 6 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 8 | 4 | oismo 9554 | . . . . . 6 ⊢ (𝐴 ⊆ On → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴)) |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (Ord 𝐴 → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴)) |
| 10 | isoeq5 7314 | . . . . 5 ⊢ (ran OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))) | |
| 11 | 9, 10 | simpl2im 503 | . . . 4 ⊢ (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))) |
| 12 | 6, 11 | mpbid 232 | . . 3 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)) |
| 13 | 4 | oicl 9543 | . . . . . 6 ⊢ Ord dom OrdIso( E , 𝐴) |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (Ord 𝐴 → Ord dom OrdIso( E , 𝐴)) |
| 15 | id 22 | . . . . 5 ⊢ (Ord 𝐴 → Ord 𝐴) | |
| 16 | ordiso2 9529 | . . . . 5 ⊢ ((OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ∧ Ord dom OrdIso( E , 𝐴) ∧ Ord 𝐴) → dom OrdIso( E , 𝐴) = 𝐴) | |
| 17 | 12, 14, 15, 16 | syl3anc 1373 | . . . 4 ⊢ (Ord 𝐴 → dom OrdIso( E , 𝐴) = 𝐴) |
| 18 | isoeq4 7313 | . . . 4 ⊢ (dom OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))) |
| 20 | 12, 19 | mpbid 232 | . 2 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) |
| 21 | weniso 7347 | . 2 ⊢ (( E We 𝐴 ∧ E Se 𝐴 ∧ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) | |
| 22 | 1, 3, 20, 21 | syl3anc 1373 | 1 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3926 I cid 5547 E cep 5552 Se wse 5604 We wwe 5605 dom cdm 5654 ran crn 5655 ↾ cres 5656 Ord word 6351 Oncon0 6352 Isom wiso 6532 Smo wsmo 8359 OrdIsocoi 9523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-smo 8360 df-recs 8385 df-oi 9524 |
| This theorem is referenced by: hsmexlem5 10444 |
| Copyright terms: Public domain | W3C validator |