MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiid Structured version   Visualization version   GIF version

Theorem oiid 9494
Description: The order type of an ordinal under the order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
oiid (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴))

Proof of Theorem oiid
StepHypRef Expression
1 ordwe 6345 . 2 (Ord 𝐴 → E We 𝐴)
2 epse 5620 . . 3 E Se 𝐴
32a1i 11 . 2 (Ord 𝐴 → E Se 𝐴)
4 eqid 2729 . . . . . 6 OrdIso( E , 𝐴) = OrdIso( E , 𝐴)
54oiiso2 9484 . . . . 5 (( E We 𝐴 ∧ E Se 𝐴) → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)))
61, 2, 5sylancl 586 . . . 4 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)))
7 ordsson 7759 . . . . . 6 (Ord 𝐴𝐴 ⊆ On)
84oismo 9493 . . . . . 6 (𝐴 ⊆ On → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴))
97, 8syl 17 . . . . 5 (Ord 𝐴 → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴))
10 isoeq5 7296 . . . . 5 (ran OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)))
119, 10simpl2im 503 . . . 4 (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)))
126, 11mpbid 232 . . 3 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))
134oicl 9482 . . . . . 6 Ord dom OrdIso( E , 𝐴)
1413a1i 11 . . . . 5 (Ord 𝐴 → Ord dom OrdIso( E , 𝐴))
15 id 22 . . . . 5 (Ord 𝐴 → Ord 𝐴)
16 ordiso2 9468 . . . . 5 ((OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ∧ Ord dom OrdIso( E , 𝐴) ∧ Ord 𝐴) → dom OrdIso( E , 𝐴) = 𝐴)
1712, 14, 15, 16syl3anc 1373 . . . 4 (Ord 𝐴 → dom OrdIso( E , 𝐴) = 𝐴)
18 isoeq4 7295 . . . 4 (dom OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)))
1917, 18syl 17 . . 3 (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)))
2012, 19mpbid 232 . 2 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))
21 weniso 7329 . 2 (( E We 𝐴 ∧ E Se 𝐴 ∧ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) → OrdIso( E , 𝐴) = ( I ↾ 𝐴))
221, 3, 20, 21syl3anc 1373 1 (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wss 3914   I cid 5532   E cep 5537   Se wse 5589   We wwe 5590  dom cdm 5638  ran crn 5639  cres 5640  Ord word 6331  Oncon0 6332   Isom wiso 6512  Smo wsmo 8314  OrdIsocoi 9462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-smo 8315  df-recs 8340  df-oi 9463
This theorem is referenced by:  hsmexlem5  10383
  Copyright terms: Public domain W3C validator