| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oiid | Structured version Visualization version GIF version | ||
| Description: The order type of an ordinal under the ∈ order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| oiid | ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordwe 6397 | . 2 ⊢ (Ord 𝐴 → E We 𝐴) | |
| 2 | epse 5667 | . . 3 ⊢ E Se 𝐴 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (Ord 𝐴 → E Se 𝐴) |
| 4 | eqid 2737 | . . . . . 6 ⊢ OrdIso( E , 𝐴) = OrdIso( E , 𝐴) | |
| 5 | 4 | oiiso2 9571 | . . . . 5 ⊢ (( E We 𝐴 ∧ E Se 𝐴) → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴))) |
| 6 | 1, 2, 5 | sylancl 586 | . . . 4 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴))) |
| 7 | ordsson 7803 | . . . . . 6 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 8 | 4 | oismo 9580 | . . . . . 6 ⊢ (𝐴 ⊆ On → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴)) |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (Ord 𝐴 → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴)) |
| 10 | isoeq5 7341 | . . . . 5 ⊢ (ran OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))) | |
| 11 | 9, 10 | simpl2im 503 | . . . 4 ⊢ (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))) |
| 12 | 6, 11 | mpbid 232 | . . 3 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)) |
| 13 | 4 | oicl 9569 | . . . . . 6 ⊢ Ord dom OrdIso( E , 𝐴) |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (Ord 𝐴 → Ord dom OrdIso( E , 𝐴)) |
| 15 | id 22 | . . . . 5 ⊢ (Ord 𝐴 → Ord 𝐴) | |
| 16 | ordiso2 9555 | . . . . 5 ⊢ ((OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ∧ Ord dom OrdIso( E , 𝐴) ∧ Ord 𝐴) → dom OrdIso( E , 𝐴) = 𝐴) | |
| 17 | 12, 14, 15, 16 | syl3anc 1373 | . . . 4 ⊢ (Ord 𝐴 → dom OrdIso( E , 𝐴) = 𝐴) |
| 18 | isoeq4 7340 | . . . 4 ⊢ (dom OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))) |
| 20 | 12, 19 | mpbid 232 | . 2 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) |
| 21 | weniso 7374 | . 2 ⊢ (( E We 𝐴 ∧ E Se 𝐴 ∧ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) | |
| 22 | 1, 3, 20, 21 | syl3anc 1373 | 1 ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3951 I cid 5577 E cep 5583 Se wse 5635 We wwe 5636 dom cdm 5685 ran crn 5686 ↾ cres 5687 Ord word 6383 Oncon0 6384 Isom wiso 6562 Smo wsmo 8385 OrdIsocoi 9549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-smo 8386 df-recs 8411 df-oi 9550 |
| This theorem is referenced by: hsmexlem5 10470 |
| Copyright terms: Public domain | W3C validator |