MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiid Structured version   Visualization version   GIF version

Theorem oiid 9523
Description: The order type of an ordinal under the order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
oiid (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴))

Proof of Theorem oiid
StepHypRef Expression
1 ordwe 6369 . 2 (Ord 𝐴 → E We 𝐴)
2 epse 5655 . . 3 E Se 𝐴
32a1i 11 . 2 (Ord 𝐴 → E Se 𝐴)
4 eqid 2733 . . . . . 6 OrdIso( E , 𝐴) = OrdIso( E , 𝐴)
54oiiso2 9513 . . . . 5 (( E We 𝐴 ∧ E Se 𝐴) → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)))
61, 2, 5sylancl 587 . . . 4 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)))
7 ordsson 7757 . . . . . 6 (Ord 𝐴𝐴 ⊆ On)
84oismo 9522 . . . . . 6 (𝐴 ⊆ On → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴))
97, 8syl 17 . . . . 5 (Ord 𝐴 → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴))
10 isoeq5 7305 . . . . 5 (ran OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)))
119, 10simpl2im 505 . . . 4 (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)))
126, 11mpbid 231 . . 3 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))
134oicl 9511 . . . . . 6 Ord dom OrdIso( E , 𝐴)
1413a1i 11 . . . . 5 (Ord 𝐴 → Ord dom OrdIso( E , 𝐴))
15 id 22 . . . . 5 (Ord 𝐴 → Ord 𝐴)
16 ordiso2 9497 . . . . 5 ((OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ∧ Ord dom OrdIso( E , 𝐴) ∧ Ord 𝐴) → dom OrdIso( E , 𝐴) = 𝐴)
1712, 14, 15, 16syl3anc 1372 . . . 4 (Ord 𝐴 → dom OrdIso( E , 𝐴) = 𝐴)
18 isoeq4 7304 . . . 4 (dom OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)))
1917, 18syl 17 . . 3 (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)))
2012, 19mpbid 231 . 2 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))
21 weniso 7338 . 2 (( E We 𝐴 ∧ E Se 𝐴 ∧ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) → OrdIso( E , 𝐴) = ( I ↾ 𝐴))
221, 3, 20, 21syl3anc 1372 1 (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wss 3946   I cid 5569   E cep 5575   Se wse 5625   We wwe 5626  dom cdm 5672  ran crn 5673  cres 5674  Ord word 6355  Oncon0 6356   Isom wiso 6536  Smo wsmo 8332  OrdIsocoi 9491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-smo 8333  df-recs 8358  df-oi 9492
This theorem is referenced by:  hsmexlem5  10412
  Copyright terms: Public domain W3C validator