MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiid Structured version   Visualization version   GIF version

Theorem oiid 8800
Description: The order type of an ordinal under the order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
oiid (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴))

Proof of Theorem oiid
StepHypRef Expression
1 ordwe 6042 . 2 (Ord 𝐴 → E We 𝐴)
2 epse 5390 . . 3 E Se 𝐴
32a1i 11 . 2 (Ord 𝐴 → E Se 𝐴)
4 eqid 2778 . . . . . 6 OrdIso( E , 𝐴) = OrdIso( E , 𝐴)
54oiiso2 8790 . . . . 5 (( E We 𝐴 ∧ E Se 𝐴) → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)))
61, 2, 5sylancl 577 . . . 4 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)))
7 ordsson 7320 . . . . . 6 (Ord 𝐴𝐴 ⊆ On)
84oismo 8799 . . . . . 6 (𝐴 ⊆ On → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴))
97, 8syl 17 . . . . 5 (Ord 𝐴 → (Smo OrdIso( E , 𝐴) ∧ ran OrdIso( E , 𝐴) = 𝐴))
10 isoeq5 6897 . . . . 5 (ran OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)))
119, 10simpl2im 496 . . . 4 (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), ran OrdIso( E , 𝐴)) ↔ OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴)))
126, 11mpbid 224 . . 3 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴))
134oicl 8788 . . . . . 6 Ord dom OrdIso( E , 𝐴)
1413a1i 11 . . . . 5 (Ord 𝐴 → Ord dom OrdIso( E , 𝐴))
15 id 22 . . . . 5 (Ord 𝐴 → Ord 𝐴)
16 ordiso2 8774 . . . . 5 ((OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ∧ Ord dom OrdIso( E , 𝐴) ∧ Ord 𝐴) → dom OrdIso( E , 𝐴) = 𝐴)
1712, 14, 15, 16syl3anc 1351 . . . 4 (Ord 𝐴 → dom OrdIso( E , 𝐴) = 𝐴)
18 isoeq4 6896 . . . 4 (dom OrdIso( E , 𝐴) = 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)))
1917, 18syl 17 . . 3 (Ord 𝐴 → (OrdIso( E , 𝐴) Isom E , E (dom OrdIso( E , 𝐴), 𝐴) ↔ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)))
2012, 19mpbid 224 . 2 (Ord 𝐴 → OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴))
21 weniso 6930 . 2 (( E We 𝐴 ∧ E Se 𝐴 ∧ OrdIso( E , 𝐴) Isom E , E (𝐴, 𝐴)) → OrdIso( E , 𝐴) = ( I ↾ 𝐴))
221, 3, 20, 21syl3anc 1351 1 (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wss 3829   I cid 5311   E cep 5316   Se wse 5364   We wwe 5365  dom cdm 5407  ran crn 5408  cres 5409  Ord word 6028  Oncon0 6029   Isom wiso 6189  Smo wsmo 7786  OrdIsocoi 8768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-wrecs 7750  df-smo 7787  df-recs 7812  df-oi 8769
This theorem is referenced by:  hsmexlem5  9650
  Copyright terms: Public domain W3C validator