MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8b Structured version   Visualization version   GIF version

Theorem dfac8b 10025
Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
dfac8b (𝐴 ∈ dom card β†’ βˆƒπ‘₯ π‘₯ We 𝐴)
Distinct variable group:   π‘₯,𝐴

Proof of Theorem dfac8b
Dummy variables 𝑀 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardid2 9947 . . 3 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
2 bren 8948 . . 3 ((cardβ€˜π΄) β‰ˆ 𝐴 ↔ βˆƒπ‘“ 𝑓:(cardβ€˜π΄)–1-1-onto→𝐴)
31, 2sylib 217 . 2 (𝐴 ∈ dom card β†’ βˆƒπ‘“ 𝑓:(cardβ€˜π΄)–1-1-onto→𝐴)
4 sqxpexg 7738 . . . . 5 (𝐴 ∈ dom card β†’ (𝐴 Γ— 𝐴) ∈ V)
5 incom 4196 . . . . . 6 ({βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} ∩ (𝐴 Γ— 𝐴)) = ((𝐴 Γ— 𝐴) ∩ {βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)})
6 inex1g 5312 . . . . . 6 ((𝐴 Γ— 𝐴) ∈ V β†’ ((𝐴 Γ— 𝐴) ∩ {βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)}) ∈ V)
75, 6eqeltrid 2831 . . . . 5 ((𝐴 Γ— 𝐴) ∈ V β†’ ({βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} ∩ (𝐴 Γ— 𝐴)) ∈ V)
84, 7syl 17 . . . 4 (𝐴 ∈ dom card β†’ ({βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} ∩ (𝐴 Γ— 𝐴)) ∈ V)
9 f1ocnv 6838 . . . . . 6 (𝑓:(cardβ€˜π΄)–1-1-onto→𝐴 β†’ ◑𝑓:𝐴–1-1-ontoβ†’(cardβ€˜π΄))
10 cardon 9938 . . . . . . . 8 (cardβ€˜π΄) ∈ On
1110onordi 6468 . . . . . . 7 Ord (cardβ€˜π΄)
12 ordwe 6370 . . . . . . 7 (Ord (cardβ€˜π΄) β†’ E We (cardβ€˜π΄))
1311, 12ax-mp 5 . . . . . 6 E We (cardβ€˜π΄)
14 eqid 2726 . . . . . . 7 {βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} = {βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)}
1514f1owe 7345 . . . . . 6 (◑𝑓:𝐴–1-1-ontoβ†’(cardβ€˜π΄) β†’ ( E We (cardβ€˜π΄) β†’ {βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} We 𝐴))
169, 13, 15mpisyl 21 . . . . 5 (𝑓:(cardβ€˜π΄)–1-1-onto→𝐴 β†’ {βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} We 𝐴)
17 weinxp 5753 . . . . 5 ({βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} We 𝐴 ↔ ({βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} ∩ (𝐴 Γ— 𝐴)) We 𝐴)
1816, 17sylib 217 . . . 4 (𝑓:(cardβ€˜π΄)–1-1-onto→𝐴 β†’ ({βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} ∩ (𝐴 Γ— 𝐴)) We 𝐴)
19 weeq1 5657 . . . . 5 (π‘₯ = ({βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} ∩ (𝐴 Γ— 𝐴)) β†’ (π‘₯ We 𝐴 ↔ ({βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} ∩ (𝐴 Γ— 𝐴)) We 𝐴))
2019spcegv 3581 . . . 4 (({βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} ∩ (𝐴 Γ— 𝐴)) ∈ V β†’ (({βŸ¨π‘§, π‘€βŸ© ∣ (β—‘π‘“β€˜π‘§) E (β—‘π‘“β€˜π‘€)} ∩ (𝐴 Γ— 𝐴)) We 𝐴 β†’ βˆƒπ‘₯ π‘₯ We 𝐴))
218, 18, 20syl2im 40 . . 3 (𝐴 ∈ dom card β†’ (𝑓:(cardβ€˜π΄)–1-1-onto→𝐴 β†’ βˆƒπ‘₯ π‘₯ We 𝐴))
2221exlimdv 1928 . 2 (𝐴 ∈ dom card β†’ (βˆƒπ‘“ 𝑓:(cardβ€˜π΄)–1-1-onto→𝐴 β†’ βˆƒπ‘₯ π‘₯ We 𝐴))
233, 22mpd 15 1 (𝐴 ∈ dom card β†’ βˆƒπ‘₯ π‘₯ We 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4  βˆƒwex 1773   ∈ wcel 2098  Vcvv 3468   ∩ cin 3942   class class class wbr 5141  {copab 5203   E cep 5572   We wwe 5623   Γ— cxp 5667  β—‘ccnv 5668  dom cdm 5669  Ord word 6356  β€“1-1-ontoβ†’wf1o 6535  β€˜cfv 6536   β‰ˆ cen 8935  cardccrd 9929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6360  df-on 6361  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-en 8939  df-card 9933
This theorem is referenced by:  ween  10029  ac5num  10030  dfac8  10129
  Copyright terms: Public domain W3C validator