MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8b Structured version   Visualization version   GIF version

Theorem dfac8b 9718
Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
dfac8b (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem dfac8b
Dummy variables 𝑤 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardid2 9642 . . 3 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
2 bren 8701 . . 3 ((card‘𝐴) ≈ 𝐴 ↔ ∃𝑓 𝑓:(card‘𝐴)–1-1-onto𝐴)
31, 2sylib 217 . 2 (𝐴 ∈ dom card → ∃𝑓 𝑓:(card‘𝐴)–1-1-onto𝐴)
4 sqxpexg 7583 . . . . 5 (𝐴 ∈ dom card → (𝐴 × 𝐴) ∈ V)
5 incom 4131 . . . . . 6 ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)})
6 inex1g 5238 . . . . . 6 ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)}) ∈ V)
75, 6eqeltrid 2843 . . . . 5 ((𝐴 × 𝐴) ∈ V → ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) ∈ V)
84, 7syl 17 . . . 4 (𝐴 ∈ dom card → ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) ∈ V)
9 f1ocnv 6712 . . . . . 6 (𝑓:(card‘𝐴)–1-1-onto𝐴𝑓:𝐴1-1-onto→(card‘𝐴))
10 cardon 9633 . . . . . . . 8 (card‘𝐴) ∈ On
1110onordi 6356 . . . . . . 7 Ord (card‘𝐴)
12 ordwe 6264 . . . . . . 7 (Ord (card‘𝐴) → E We (card‘𝐴))
1311, 12ax-mp 5 . . . . . 6 E We (card‘𝐴)
14 eqid 2738 . . . . . . 7 {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} = {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)}
1514f1owe 7204 . . . . . 6 (𝑓:𝐴1-1-onto→(card‘𝐴) → ( E We (card‘𝐴) → {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} We 𝐴))
169, 13, 15mpisyl 21 . . . . 5 (𝑓:(card‘𝐴)–1-1-onto𝐴 → {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} We 𝐴)
17 weinxp 5662 . . . . 5 ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} We 𝐴 ↔ ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴)
1816, 17sylib 217 . . . 4 (𝑓:(card‘𝐴)–1-1-onto𝐴 → ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴)
19 weeq1 5568 . . . . 5 (𝑥 = ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) → (𝑥 We 𝐴 ↔ ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴))
2019spcegv 3526 . . . 4 (({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) ∈ V → (({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴))
218, 18, 20syl2im 40 . . 3 (𝐴 ∈ dom card → (𝑓:(card‘𝐴)–1-1-onto𝐴 → ∃𝑥 𝑥 We 𝐴))
2221exlimdv 1937 . 2 (𝐴 ∈ dom card → (∃𝑓 𝑓:(card‘𝐴)–1-1-onto𝐴 → ∃𝑥 𝑥 We 𝐴))
233, 22mpd 15 1 (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1783  wcel 2108  Vcvv 3422  cin 3882   class class class wbr 5070  {copab 5132   E cep 5485   We wwe 5534   × cxp 5578  ccnv 5579  dom cdm 5580  Ord word 6250  1-1-ontowf1o 6417  cfv 6418  cen 8688  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-en 8692  df-card 9628
This theorem is referenced by:  ween  9722  ac5num  9723  dfac8  9822
  Copyright terms: Public domain W3C validator