Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfac8b | Structured version Visualization version GIF version |
Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
dfac8b | ⊢ (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 9711 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
2 | bren 8743 | . . 3 ⊢ ((card‘𝐴) ≈ 𝐴 ↔ ∃𝑓 𝑓:(card‘𝐴)–1-1-onto→𝐴) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐴 ∈ dom card → ∃𝑓 𝑓:(card‘𝐴)–1-1-onto→𝐴) |
4 | sqxpexg 7605 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐴 × 𝐴) ∈ V) | |
5 | incom 4135 | . . . . . 6 ⊢ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)}) | |
6 | inex1g 5243 | . . . . . 6 ⊢ ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)}) ∈ V) | |
7 | 5, 6 | eqeltrid 2843 | . . . . 5 ⊢ ((𝐴 × 𝐴) ∈ V → ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) ∈ V) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝐴 ∈ dom card → ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) ∈ V) |
9 | f1ocnv 6728 | . . . . . 6 ⊢ (𝑓:(card‘𝐴)–1-1-onto→𝐴 → ◡𝑓:𝐴–1-1-onto→(card‘𝐴)) | |
10 | cardon 9702 | . . . . . . . 8 ⊢ (card‘𝐴) ∈ On | |
11 | 10 | onordi 6371 | . . . . . . 7 ⊢ Ord (card‘𝐴) |
12 | ordwe 6279 | . . . . . . 7 ⊢ (Ord (card‘𝐴) → E We (card‘𝐴)) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ E We (card‘𝐴) |
14 | eqid 2738 | . . . . . . 7 ⊢ {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} = {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} | |
15 | 14 | f1owe 7224 | . . . . . 6 ⊢ (◡𝑓:𝐴–1-1-onto→(card‘𝐴) → ( E We (card‘𝐴) → {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} We 𝐴)) |
16 | 9, 13, 15 | mpisyl 21 | . . . . 5 ⊢ (𝑓:(card‘𝐴)–1-1-onto→𝐴 → {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} We 𝐴) |
17 | weinxp 5671 | . . . . 5 ⊢ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} We 𝐴 ↔ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴) | |
18 | 16, 17 | sylib 217 | . . . 4 ⊢ (𝑓:(card‘𝐴)–1-1-onto→𝐴 → ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴) |
19 | weeq1 5577 | . . . . 5 ⊢ (𝑥 = ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) → (𝑥 We 𝐴 ↔ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴)) | |
20 | 19 | spcegv 3536 | . . . 4 ⊢ (({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) ∈ V → (({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴)) |
21 | 8, 18, 20 | syl2im 40 | . . 3 ⊢ (𝐴 ∈ dom card → (𝑓:(card‘𝐴)–1-1-onto→𝐴 → ∃𝑥 𝑥 We 𝐴)) |
22 | 21 | exlimdv 1936 | . 2 ⊢ (𝐴 ∈ dom card → (∃𝑓 𝑓:(card‘𝐴)–1-1-onto→𝐴 → ∃𝑥 𝑥 We 𝐴)) |
23 | 3, 22 | mpd 15 | 1 ⊢ (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 class class class wbr 5074 {copab 5136 E cep 5494 We wwe 5543 × cxp 5587 ◡ccnv 5588 dom cdm 5589 Ord word 6265 –1-1-onto→wf1o 6432 ‘cfv 6433 ≈ cen 8730 cardccrd 9693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-en 8734 df-card 9697 |
This theorem is referenced by: ween 9791 ac5num 9792 dfac8 9891 |
Copyright terms: Public domain | W3C validator |