MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8b Structured version   Visualization version   GIF version

Theorem dfac8b 9991
Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
dfac8b (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem dfac8b
Dummy variables 𝑤 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardid2 9913 . . 3 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
2 bren 8931 . . 3 ((card‘𝐴) ≈ 𝐴 ↔ ∃𝑓 𝑓:(card‘𝐴)–1-1-onto𝐴)
31, 2sylib 218 . 2 (𝐴 ∈ dom card → ∃𝑓 𝑓:(card‘𝐴)–1-1-onto𝐴)
4 sqxpexg 7734 . . . . 5 (𝐴 ∈ dom card → (𝐴 × 𝐴) ∈ V)
5 incom 4175 . . . . . 6 ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)})
6 inex1g 5277 . . . . . 6 ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)}) ∈ V)
75, 6eqeltrid 2833 . . . . 5 ((𝐴 × 𝐴) ∈ V → ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) ∈ V)
84, 7syl 17 . . . 4 (𝐴 ∈ dom card → ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) ∈ V)
9 f1ocnv 6815 . . . . . 6 (𝑓:(card‘𝐴)–1-1-onto𝐴𝑓:𝐴1-1-onto→(card‘𝐴))
10 cardon 9904 . . . . . . . 8 (card‘𝐴) ∈ On
1110onordi 6448 . . . . . . 7 Ord (card‘𝐴)
12 ordwe 6348 . . . . . . 7 (Ord (card‘𝐴) → E We (card‘𝐴))
1311, 12ax-mp 5 . . . . . 6 E We (card‘𝐴)
14 eqid 2730 . . . . . . 7 {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} = {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)}
1514f1owe 7331 . . . . . 6 (𝑓:𝐴1-1-onto→(card‘𝐴) → ( E We (card‘𝐴) → {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} We 𝐴))
169, 13, 15mpisyl 21 . . . . 5 (𝑓:(card‘𝐴)–1-1-onto𝐴 → {⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} We 𝐴)
17 weinxp 5726 . . . . 5 ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} We 𝐴 ↔ ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴)
1816, 17sylib 218 . . . 4 (𝑓:(card‘𝐴)–1-1-onto𝐴 → ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴)
19 weeq1 5628 . . . . 5 (𝑥 = ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) → (𝑥 We 𝐴 ↔ ({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴))
2019spcegv 3566 . . . 4 (({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) ∈ V → (({⟨𝑧, 𝑤⟩ ∣ (𝑓𝑧) E (𝑓𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴))
218, 18, 20syl2im 40 . . 3 (𝐴 ∈ dom card → (𝑓:(card‘𝐴)–1-1-onto𝐴 → ∃𝑥 𝑥 We 𝐴))
2221exlimdv 1933 . 2 (𝐴 ∈ dom card → (∃𝑓 𝑓:(card‘𝐴)–1-1-onto𝐴 → ∃𝑥 𝑥 We 𝐴))
233, 22mpd 15 1 (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779  wcel 2109  Vcvv 3450  cin 3916   class class class wbr 5110  {copab 5172   E cep 5540   We wwe 5593   × cxp 5639  ccnv 5640  dom cdm 5641  Ord word 6334  1-1-ontowf1o 6513  cfv 6514  cen 8918  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-en 8922  df-card 9899
This theorem is referenced by:  ween  9995  ac5num  9996  dfac8  10096  numiunnum  36465
  Copyright terms: Public domain W3C validator