![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfac8b | Structured version Visualization version GIF version |
Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
dfac8b | ⊢ (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 9983 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
2 | bren 8974 | . . 3 ⊢ ((card‘𝐴) ≈ 𝐴 ↔ ∃𝑓 𝑓:(card‘𝐴)–1-1-onto→𝐴) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐴 ∈ dom card → ∃𝑓 𝑓:(card‘𝐴)–1-1-onto→𝐴) |
4 | sqxpexg 7758 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐴 × 𝐴) ∈ V) | |
5 | incom 4199 | . . . . . 6 ⊢ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)}) | |
6 | inex1g 5320 | . . . . . 6 ⊢ ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)}) ∈ V) | |
7 | 5, 6 | eqeltrid 2829 | . . . . 5 ⊢ ((𝐴 × 𝐴) ∈ V → ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) ∈ V) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝐴 ∈ dom card → ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) ∈ V) |
9 | f1ocnv 6850 | . . . . . 6 ⊢ (𝑓:(card‘𝐴)–1-1-onto→𝐴 → ◡𝑓:𝐴–1-1-onto→(card‘𝐴)) | |
10 | cardon 9974 | . . . . . . . 8 ⊢ (card‘𝐴) ∈ On | |
11 | 10 | onordi 6482 | . . . . . . 7 ⊢ Ord (card‘𝐴) |
12 | ordwe 6384 | . . . . . . 7 ⊢ (Ord (card‘𝐴) → E We (card‘𝐴)) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ E We (card‘𝐴) |
14 | eqid 2725 | . . . . . . 7 ⊢ {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} = {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} | |
15 | 14 | f1owe 7360 | . . . . . 6 ⊢ (◡𝑓:𝐴–1-1-onto→(card‘𝐴) → ( E We (card‘𝐴) → {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} We 𝐴)) |
16 | 9, 13, 15 | mpisyl 21 | . . . . 5 ⊢ (𝑓:(card‘𝐴)–1-1-onto→𝐴 → {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} We 𝐴) |
17 | weinxp 5762 | . . . . 5 ⊢ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} We 𝐴 ↔ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴) | |
18 | 16, 17 | sylib 217 | . . . 4 ⊢ (𝑓:(card‘𝐴)–1-1-onto→𝐴 → ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴) |
19 | weeq1 5666 | . . . . 5 ⊢ (𝑥 = ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) → (𝑥 We 𝐴 ↔ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴)) | |
20 | 19 | spcegv 3581 | . . . 4 ⊢ (({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) ∈ V → (({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴)) |
21 | 8, 18, 20 | syl2im 40 | . . 3 ⊢ (𝐴 ∈ dom card → (𝑓:(card‘𝐴)–1-1-onto→𝐴 → ∃𝑥 𝑥 We 𝐴)) |
22 | 21 | exlimdv 1928 | . 2 ⊢ (𝐴 ∈ dom card → (∃𝑓 𝑓:(card‘𝐴)–1-1-onto→𝐴 → ∃𝑥 𝑥 We 𝐴)) |
23 | 3, 22 | mpd 15 | 1 ⊢ (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1773 ∈ wcel 2098 Vcvv 3461 ∩ cin 3943 class class class wbr 5149 {copab 5211 E cep 5581 We wwe 5632 × cxp 5676 ◡ccnv 5677 dom cdm 5678 Ord word 6370 –1-1-onto→wf1o 6548 ‘cfv 6549 ≈ cen 8961 cardccrd 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-en 8965 df-card 9969 |
This theorem is referenced by: ween 10065 ac5num 10066 dfac8 10165 |
Copyright terms: Public domain | W3C validator |