MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limccnp2 Structured version   Visualization version   GIF version

Theorem limccnp2 25814
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
limccnp2.r ((𝜑𝑥𝐴) → 𝑅𝑋)
limccnp2.s ((𝜑𝑥𝐴) → 𝑆𝑌)
limccnp2.x (𝜑𝑋 ⊆ ℂ)
limccnp2.y (𝜑𝑌 ⊆ ℂ)
limccnp2.k 𝐾 = (TopOpen‘ℂfld)
limccnp2.j 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))
limccnp2.c (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))
limccnp2.d (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))
limccnp2.h (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))
Assertion
Ref Expression
limccnp2 (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐻   𝜑,𝑥   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem limccnp2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limccnp2.h . . . . . . . . . . 11 (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))
2 eqid 2727 . . . . . . . . . . . 12 𝐽 = 𝐽
32cnprcl 23142 . . . . . . . . . . 11 (𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩) → ⟨𝐶, 𝐷⟩ ∈ 𝐽)
41, 3syl 17 . . . . . . . . . 10 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝐽)
5 limccnp2.j . . . . . . . . . . . 12 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))
6 limccnp2.k . . . . . . . . . . . . . . 15 𝐾 = (TopOpen‘ℂfld)
76cnfldtopon 24692 . . . . . . . . . . . . . 14 𝐾 ∈ (TopOn‘ℂ)
8 txtopon 23488 . . . . . . . . . . . . . 14 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)))
97, 7, 8mp2an 691 . . . . . . . . . . . . 13 (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ))
10 limccnp2.x . . . . . . . . . . . . . 14 (𝜑𝑋 ⊆ ℂ)
11 limccnp2.y . . . . . . . . . . . . . 14 (𝜑𝑌 ⊆ ℂ)
12 xpss12 5687 . . . . . . . . . . . . . 14 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
1310, 11, 12syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
14 resttopon 23058 . . . . . . . . . . . . 13 (((𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌)))
159, 13, 14sylancr 586 . . . . . . . . . . . 12 (𝜑 → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌)))
165, 15eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘(𝑋 × 𝑌)))
17 toponuni 22809 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = 𝐽)
1816, 17syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 × 𝑌) = 𝐽)
194, 18eleqtrrd 2831 . . . . . . . . 9 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
20 opelxp 5708 . . . . . . . . 9 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) ↔ (𝐶𝑋𝐷𝑌))
2119, 20sylib 217 . . . . . . . 8 (𝜑 → (𝐶𝑋𝐷𝑌))
2221simpld 494 . . . . . . 7 (𝜑𝐶𝑋)
2322ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐶𝑋)
24 simpll 766 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
25 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → 𝑥 ∈ (𝐴 ∪ {𝐵}))
26 elun 4144 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥𝐴𝑥 ∈ {𝐵}))
2725, 26sylib 217 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥𝐴𝑥 ∈ {𝐵}))
2827ord 863 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥𝐴𝑥 ∈ {𝐵}))
29 elsni 4641 . . . . . . . . . 10 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
3028, 29syl6 35 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥𝐴𝑥 = 𝐵))
3130con1d 145 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥 = 𝐵𝑥𝐴))
3231imp 406 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐴)
33 limccnp2.r . . . . . . 7 ((𝜑𝑥𝐴) → 𝑅𝑋)
3424, 32, 33syl2anc 583 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑅𝑋)
3523, 34ifclda 4559 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐶, 𝑅) ∈ 𝑋)
3621simprd 495 . . . . . . 7 (𝜑𝐷𝑌)
3736ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐷𝑌)
38 limccnp2.s . . . . . . 7 ((𝜑𝑥𝐴) → 𝑆𝑌)
3924, 32, 38syl2anc 583 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑆𝑌)
4037, 39ifclda 4559 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐷, 𝑆) ∈ 𝑌)
4135, 40opelxpd 5711 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ ∈ (𝑋 × 𝑌))
42 eqidd 2728 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩))
437a1i 11 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ℂ))
44 cnpf2 23147 . . . . . 6 ((𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩)) → 𝐻:(𝑋 × 𝑌)⟶ℂ)
4516, 43, 1, 44syl3anc 1369 . . . . 5 (𝜑𝐻:(𝑋 × 𝑌)⟶ℂ)
4645feqmptd 6961 . . . 4 (𝜑𝐻 = (𝑦 ∈ (𝑋 × 𝑌) ↦ (𝐻𝑦)))
47 fveq2 6891 . . . . 5 (𝑦 = ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ → (𝐻𝑦) = (𝐻‘⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩))
48 df-ov 7417 . . . . . 6 (if(𝑥 = 𝐵, 𝐶, 𝑅)𝐻if(𝑥 = 𝐵, 𝐷, 𝑆)) = (𝐻‘⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)
49 ovif12 7514 . . . . . 6 (if(𝑥 = 𝐵, 𝐶, 𝑅)𝐻if(𝑥 = 𝐵, 𝐷, 𝑆)) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))
5048, 49eqtr3i 2757 . . . . 5 (𝐻‘⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))
5147, 50eqtrdi 2783 . . . 4 (𝑦 = ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ → (𝐻𝑦) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆)))
5241, 42, 46, 51fmptco 7132 . . 3 (𝜑 → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))))
53 eqid 2727 . . . . . . . . . . 11 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
5453, 33dmmptd 6694 . . . . . . . . . 10 (𝜑 → dom (𝑥𝐴𝑅) = 𝐴)
55 limccnp2.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))
56 limcrcl 25796 . . . . . . . . . . . 12 (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵) → ((𝑥𝐴𝑅):dom (𝑥𝐴𝑅)⟶ℂ ∧ dom (𝑥𝐴𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
5755, 56syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐴𝑅):dom (𝑥𝐴𝑅)⟶ℂ ∧ dom (𝑥𝐴𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
5857simp2d 1141 . . . . . . . . . 10 (𝜑 → dom (𝑥𝐴𝑅) ⊆ ℂ)
5954, 58eqsstrrd 4017 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
6057simp3d 1142 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
6160snssd 4808 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ ℂ)
6259, 61unssd 4182 . . . . . . . 8 (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ)
63 resttopon 23058 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
647, 62, 63sylancr 586 . . . . . . 7 (𝜑 → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
65 ssun2 4169 . . . . . . . 8 {𝐵} ⊆ (𝐴 ∪ {𝐵})
66 snssg 4783 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
6760, 66syl 17 . . . . . . . 8 (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
6865, 67mpbiri 258 . . . . . . 7 (𝜑𝐵 ∈ (𝐴 ∪ {𝐵}))
6910adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑋 ⊆ ℂ)
7069, 33sseldd 3979 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
71 eqid 2727 . . . . . . . . 9 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
7259, 60, 70, 71, 6limcmpt 25805 . . . . . . . 8 (𝜑 → (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, 𝑅)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
7355, 72mpbid 231 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, 𝑅)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
74 limccnp2.d . . . . . . . 8 (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))
7511adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑌 ⊆ ℂ)
7675, 38sseldd 3979 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑆 ∈ ℂ)
7759, 60, 76, 71, 6limcmpt 25805 . . . . . . . 8 (𝜑 → (𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐷, 𝑆)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
7874, 77mpbid 231 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐷, 𝑆)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
7964, 43, 43, 68, 73, 78txcnp 23517 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵))
809topontopi 22810 . . . . . . . 8 (𝐾 ×t 𝐾) ∈ Top
8180a1i 11 . . . . . . 7 (𝜑 → (𝐾 ×t 𝐾) ∈ Top)
8241fmpttd 7119 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩):(𝐴 ∪ {𝐵})⟶(𝑋 × 𝑌))
83 toponuni 22809 . . . . . . . . . 10 ((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
8464, 83syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
8584feq2d 6702 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩):(𝐴 ∪ {𝐵})⟶(𝑋 × 𝑌) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩): (𝐾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌)))
8682, 85mpbid 231 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩): (𝐾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌))
87 eqid 2727 . . . . . . . 8 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
889toponunii 22811 . . . . . . . 8 (ℂ × ℂ) = (𝐾 ×t 𝐾)
8987, 88cnprest2 23187 . . . . . . 7 (((𝐾 ×t 𝐾) ∈ Top ∧ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩): (𝐾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵)))
9081, 86, 13, 89syl3anc 1369 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵)))
9179, 90mpbid 231 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵))
925oveq2i 7425 . . . . . 6 ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽) = ((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))
9392fveq1i 6892 . . . . 5 (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵)
9491, 93eleqtrrdi 2839 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵))
95 iftrue 4530 . . . . . . . . 9 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐶, 𝑅) = 𝐶)
96 iftrue 4530 . . . . . . . . 9 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐷, 𝑆) = 𝐷)
9795, 96opeq12d 4877 . . . . . . . 8 (𝑥 = 𝐵 → ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ = ⟨𝐶, 𝐷⟩)
98 eqid 2727 . . . . . . . 8 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)
99 opex 5460 . . . . . . . 8 𝐶, 𝐷⟩ ∈ V
10097, 98, 99fvmpt 6999 . . . . . . 7 (𝐵 ∈ (𝐴 ∪ {𝐵}) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵) = ⟨𝐶, 𝐷⟩)
10168, 100syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵) = ⟨𝐶, 𝐷⟩)
102101fveq2d 6895 . . . . 5 (𝜑 → ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵)) = ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))
1031, 102eleqtrrd 2831 . . . 4 (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵)))
104 cnpco 23164 . . . 4 (((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) ∧ 𝐻 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵))) → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
10594, 103, 104syl2anc 583 . . 3 (𝜑 → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
10652, 105eqeltrrd 2829 . 2 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
10745adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐻:(𝑋 × 𝑌)⟶ℂ)
108107, 33, 38fovcdmd 7587 . . 3 ((𝜑𝑥𝐴) → (𝑅𝐻𝑆) ∈ ℂ)
10959, 60, 108, 71, 6limcmpt 25805 . 2 (𝜑 → ((𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
110106, 109mpbird 257 1 (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  cun 3942  wss 3944  ifcif 4524  {csn 4624  cop 4630   cuni 4903  cmpt 5225   × cxp 5670  dom cdm 5672  ccom 5676  wf 6538  cfv 6542  (class class class)co 7414  cc 11130  t crest 17395  TopOpenctopn 17396  fldccnfld 21272  Topctop 22788  TopOnctopon 22805   CnP ccnp 23122   ×t ctx 23457   lim climc 25784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-fz 13511  df-seq 13993  df-exp 14053  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17109  df-slot 17144  df-ndx 17156  df-base 17174  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-rest 17397  df-topn 17398  df-topgen 17418  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cnp 23125  df-tx 23459  df-xms 24219  df-ms 24220  df-limc 25788
This theorem is referenced by:  dvcnp2  25842  dvcnp2OLD  25843  dvaddbr  25861  dvmulbr  25862  dvmulbrOLD  25863  dvcobr  25870  dvcobrOLD  25871  lhop1lem  25939  taylthlem2  26302  taylthlem2OLD  26303
  Copyright terms: Public domain W3C validator