MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limccnp2 Structured version   Visualization version   GIF version

Theorem limccnp2 24492
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
limccnp2.r ((𝜑𝑥𝐴) → 𝑅𝑋)
limccnp2.s ((𝜑𝑥𝐴) → 𝑆𝑌)
limccnp2.x (𝜑𝑋 ⊆ ℂ)
limccnp2.y (𝜑𝑌 ⊆ ℂ)
limccnp2.k 𝐾 = (TopOpen‘ℂfld)
limccnp2.j 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))
limccnp2.c (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))
limccnp2.d (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))
limccnp2.h (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))
Assertion
Ref Expression
limccnp2 (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐻   𝜑,𝑥   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem limccnp2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limccnp2.h . . . . . . . . . . 11 (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))
2 eqid 2823 . . . . . . . . . . . 12 𝐽 = 𝐽
32cnprcl 21855 . . . . . . . . . . 11 (𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩) → ⟨𝐶, 𝐷⟩ ∈ 𝐽)
41, 3syl 17 . . . . . . . . . 10 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝐽)
5 limccnp2.j . . . . . . . . . . . 12 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))
6 limccnp2.k . . . . . . . . . . . . . . 15 𝐾 = (TopOpen‘ℂfld)
76cnfldtopon 23393 . . . . . . . . . . . . . 14 𝐾 ∈ (TopOn‘ℂ)
8 txtopon 22201 . . . . . . . . . . . . . 14 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)))
97, 7, 8mp2an 690 . . . . . . . . . . . . 13 (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ))
10 limccnp2.x . . . . . . . . . . . . . 14 (𝜑𝑋 ⊆ ℂ)
11 limccnp2.y . . . . . . . . . . . . . 14 (𝜑𝑌 ⊆ ℂ)
12 xpss12 5572 . . . . . . . . . . . . . 14 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
1310, 11, 12syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
14 resttopon 21771 . . . . . . . . . . . . 13 (((𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌)))
159, 13, 14sylancr 589 . . . . . . . . . . . 12 (𝜑 → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌)))
165, 15eqeltrid 2919 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘(𝑋 × 𝑌)))
17 toponuni 21524 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = 𝐽)
1816, 17syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 × 𝑌) = 𝐽)
194, 18eleqtrrd 2918 . . . . . . . . 9 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
20 opelxp 5593 . . . . . . . . 9 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) ↔ (𝐶𝑋𝐷𝑌))
2119, 20sylib 220 . . . . . . . 8 (𝜑 → (𝐶𝑋𝐷𝑌))
2221simpld 497 . . . . . . 7 (𝜑𝐶𝑋)
2322ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐶𝑋)
24 simpll 765 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝜑)
25 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → 𝑥 ∈ (𝐴 ∪ {𝐵}))
26 elun 4127 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥𝐴𝑥 ∈ {𝐵}))
2725, 26sylib 220 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥𝐴𝑥 ∈ {𝐵}))
2827ord 860 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥𝐴𝑥 ∈ {𝐵}))
29 elsni 4586 . . . . . . . . . 10 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
3028, 29syl6 35 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥𝐴𝑥 = 𝐵))
3130con1d 147 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥 = 𝐵𝑥𝐴))
3231imp 409 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐴)
33 limccnp2.r . . . . . . 7 ((𝜑𝑥𝐴) → 𝑅𝑋)
3424, 32, 33syl2anc 586 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑅𝑋)
3523, 34ifclda 4503 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐶, 𝑅) ∈ 𝑋)
3621simprd 498 . . . . . . 7 (𝜑𝐷𝑌)
3736ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐷𝑌)
38 limccnp2.s . . . . . . 7 ((𝜑𝑥𝐴) → 𝑆𝑌)
3924, 32, 38syl2anc 586 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑆𝑌)
4037, 39ifclda 4503 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐷, 𝑆) ∈ 𝑌)
4135, 40opelxpd 5595 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ ∈ (𝑋 × 𝑌))
42 eqidd 2824 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩))
437a1i 11 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ℂ))
44 cnpf2 21860 . . . . . 6 ((𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩)) → 𝐻:(𝑋 × 𝑌)⟶ℂ)
4516, 43, 1, 44syl3anc 1367 . . . . 5 (𝜑𝐻:(𝑋 × 𝑌)⟶ℂ)
4645feqmptd 6735 . . . 4 (𝜑𝐻 = (𝑦 ∈ (𝑋 × 𝑌) ↦ (𝐻𝑦)))
47 fveq2 6672 . . . . 5 (𝑦 = ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ → (𝐻𝑦) = (𝐻‘⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩))
48 df-ov 7161 . . . . . 6 (if(𝑥 = 𝐵, 𝐶, 𝑅)𝐻if(𝑥 = 𝐵, 𝐷, 𝑆)) = (𝐻‘⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)
49 ovif12 7255 . . . . . 6 (if(𝑥 = 𝐵, 𝐶, 𝑅)𝐻if(𝑥 = 𝐵, 𝐷, 𝑆)) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))
5048, 49eqtr3i 2848 . . . . 5 (𝐻‘⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))
5147, 50syl6eq 2874 . . . 4 (𝑦 = ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ → (𝐻𝑦) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆)))
5241, 42, 46, 51fmptco 6893 . . 3 (𝜑 → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))))
53 eqid 2823 . . . . . . . . . . 11 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
5453, 33dmmptd 6495 . . . . . . . . . 10 (𝜑 → dom (𝑥𝐴𝑅) = 𝐴)
55 limccnp2.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))
56 limcrcl 24474 . . . . . . . . . . . 12 (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵) → ((𝑥𝐴𝑅):dom (𝑥𝐴𝑅)⟶ℂ ∧ dom (𝑥𝐴𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
5755, 56syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐴𝑅):dom (𝑥𝐴𝑅)⟶ℂ ∧ dom (𝑥𝐴𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
5857simp2d 1139 . . . . . . . . . 10 (𝜑 → dom (𝑥𝐴𝑅) ⊆ ℂ)
5954, 58eqsstrrd 4008 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
6057simp3d 1140 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
6160snssd 4744 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ ℂ)
6259, 61unssd 4164 . . . . . . . 8 (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ)
63 resttopon 21771 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
647, 62, 63sylancr 589 . . . . . . 7 (𝜑 → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
65 ssun2 4151 . . . . . . . 8 {𝐵} ⊆ (𝐴 ∪ {𝐵})
66 snssg 4719 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
6760, 66syl 17 . . . . . . . 8 (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
6865, 67mpbiri 260 . . . . . . 7 (𝜑𝐵 ∈ (𝐴 ∪ {𝐵}))
6910adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑋 ⊆ ℂ)
7069, 33sseldd 3970 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
71 eqid 2823 . . . . . . . . 9 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
7259, 60, 70, 71, 6limcmpt 24483 . . . . . . . 8 (𝜑 → (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, 𝑅)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
7355, 72mpbid 234 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, 𝑅)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
74 limccnp2.d . . . . . . . 8 (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))
7511adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑌 ⊆ ℂ)
7675, 38sseldd 3970 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑆 ∈ ℂ)
7759, 60, 76, 71, 6limcmpt 24483 . . . . . . . 8 (𝜑 → (𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐷, 𝑆)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
7874, 77mpbid 234 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐷, 𝑆)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
7964, 43, 43, 68, 73, 78txcnp 22230 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵))
809topontopi 21525 . . . . . . . 8 (𝐾 ×t 𝐾) ∈ Top
8180a1i 11 . . . . . . 7 (𝜑 → (𝐾 ×t 𝐾) ∈ Top)
8241fmpttd 6881 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩):(𝐴 ∪ {𝐵})⟶(𝑋 × 𝑌))
83 toponuni 21524 . . . . . . . . . 10 ((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
8464, 83syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
8584feq2d 6502 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩):(𝐴 ∪ {𝐵})⟶(𝑋 × 𝑌) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩): (𝐾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌)))
8682, 85mpbid 234 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩): (𝐾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌))
87 eqid 2823 . . . . . . . 8 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
889toponunii 21526 . . . . . . . 8 (ℂ × ℂ) = (𝐾 ×t 𝐾)
8987, 88cnprest2 21900 . . . . . . 7 (((𝐾 ×t 𝐾) ∈ Top ∧ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩): (𝐾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵)))
9081, 86, 13, 89syl3anc 1367 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵)))
9179, 90mpbid 234 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵))
925oveq2i 7169 . . . . . 6 ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽) = ((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))
9392fveq1i 6673 . . . . 5 (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵)
9491, 93eleqtrrdi 2926 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵))
95 iftrue 4475 . . . . . . . . 9 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐶, 𝑅) = 𝐶)
96 iftrue 4475 . . . . . . . . 9 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐷, 𝑆) = 𝐷)
9795, 96opeq12d 4813 . . . . . . . 8 (𝑥 = 𝐵 → ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩ = ⟨𝐶, 𝐷⟩)
98 eqid 2823 . . . . . . . 8 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)
99 opex 5358 . . . . . . . 8 𝐶, 𝐷⟩ ∈ V
10097, 98, 99fvmpt 6770 . . . . . . 7 (𝐵 ∈ (𝐴 ∪ {𝐵}) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵) = ⟨𝐶, 𝐷⟩)
10168, 100syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵) = ⟨𝐶, 𝐷⟩)
102101fveq2d 6676 . . . . 5 (𝜑 → ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵)) = ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))
1031, 102eleqtrrd 2918 . . . 4 (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵)))
104 cnpco 21877 . . . 4 (((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) ∧ 𝐻 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)‘𝐵))) → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
10594, 103, 104syl2anc 586 . . 3 (𝜑 → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ ⟨if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)⟩)) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
10652, 105eqeltrrd 2916 . 2 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
10745adantr 483 . . . 4 ((𝜑𝑥𝐴) → 𝐻:(𝑋 × 𝑌)⟶ℂ)
108107, 33, 38fovrnd 7322 . . 3 ((𝜑𝑥𝐴) → (𝑅𝐻𝑆) ∈ ℂ)
10959, 60, 108, 71, 6limcmpt 24483 . 2 (𝜑 → ((𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
110106, 109mpbird 259 1 (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  cun 3936  wss 3938  ifcif 4469  {csn 4569  cop 4575   cuni 4840  cmpt 5148   × cxp 5555  dom cdm 5557  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  t crest 16696  TopOpenctopn 16697  fldccnfld 20547  Topctop 21503  TopOnctopon 21520   CnP ccnp 21835   ×t ctx 22170   lim climc 24462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-rest 16698  df-topn 16699  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cnp 21838  df-tx 22172  df-xms 22932  df-ms 22933  df-limc 24466
This theorem is referenced by:  dvcnp2  24519  dvaddbr  24537  dvmulbr  24538  dvcobr  24545  lhop1lem  24612  taylthlem2  24964
  Copyright terms: Public domain W3C validator