Step | Hyp | Ref
| Expression |
1 | | limccnp2.h |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) |
2 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 |
3 | 2 | cnprcl 22304 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉) → 〈𝐶, 𝐷〉 ∈ ∪
𝐽) |
4 | 1, 3 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ ∪
𝐽) |
5 | | limccnp2.j |
. . . . . . . . . . . 12
⊢ 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) |
6 | | limccnp2.k |
. . . . . . . . . . . . . . 15
⊢ 𝐾 =
(TopOpen‘ℂfld) |
7 | 6 | cnfldtopon 23852 |
. . . . . . . . . . . . . 14
⊢ 𝐾 ∈
(TopOn‘ℂ) |
8 | | txtopon 22650 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ 𝐾 ∈
(TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ ×
ℂ))) |
9 | 7, 7, 8 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ
× ℂ)) |
10 | | limccnp2.x |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
11 | | limccnp2.y |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑌 ⊆ ℂ) |
12 | | xpss12 5595 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ)) |
13 | 10, 11, 12 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ)) |
14 | | resttopon 22220 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ
× ℂ)) ∧ (𝑋
× 𝑌) ⊆ (ℂ
× ℂ)) → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌))) |
15 | 9, 13, 14 | sylancr 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌))) |
16 | 5, 15 | eqeltrid 2843 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘(𝑋 × 𝑌))) |
17 | | toponuni 21971 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = ∪ 𝐽) |
18 | 16, 17 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 × 𝑌) = ∪ 𝐽) |
19 | 4, 18 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ (𝑋 × 𝑌)) |
20 | | opelxp 5616 |
. . . . . . . . 9
⊢
(〈𝐶, 𝐷〉 ∈ (𝑋 × 𝑌) ↔ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) |
21 | 19, 20 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) |
22 | 21 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
23 | 22 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐶 ∈ 𝑋) |
24 | | simpll 763 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝜑) |
25 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → 𝑥 ∈ (𝐴 ∪ {𝐵})) |
26 | | elun 4079 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐵})) |
27 | 25, 26 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐵})) |
28 | 27 | ord 860 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐵})) |
29 | | elsni 4575 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) |
30 | 28, 29 | syl6 35 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥 ∈ 𝐴 → 𝑥 = 𝐵)) |
31 | 30 | con1d 145 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → (¬ 𝑥 = 𝐵 → 𝑥 ∈ 𝐴)) |
32 | 31 | imp 406 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ 𝐴) |
33 | | limccnp2.r |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝑋) |
34 | 24, 32, 33 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑅 ∈ 𝑋) |
35 | 23, 34 | ifclda 4491 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐶, 𝑅) ∈ 𝑋) |
36 | 21 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ 𝑌) |
37 | 36 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐷 ∈ 𝑌) |
38 | | limccnp2.s |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ 𝑌) |
39 | 24, 32, 38 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑆 ∈ 𝑌) |
40 | 37, 39 | ifclda 4491 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐷, 𝑆) ∈ 𝑌) |
41 | 35, 40 | opelxpd 5618 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉 ∈ (𝑋 × 𝑌)) |
42 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉)) |
43 | 7 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈
(TopOn‘ℂ)) |
44 | | cnpf2 22309 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) → 𝐻:(𝑋 × 𝑌)⟶ℂ) |
45 | 16, 43, 1, 44 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → 𝐻:(𝑋 × 𝑌)⟶ℂ) |
46 | 45 | feqmptd 6819 |
. . . 4
⊢ (𝜑 → 𝐻 = (𝑦 ∈ (𝑋 × 𝑌) ↦ (𝐻‘𝑦))) |
47 | | fveq2 6756 |
. . . . 5
⊢ (𝑦 = 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉 → (𝐻‘𝑦) = (𝐻‘〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉)) |
48 | | df-ov 7258 |
. . . . . 6
⊢ (if(𝑥 = 𝐵, 𝐶, 𝑅)𝐻if(𝑥 = 𝐵, 𝐷, 𝑆)) = (𝐻‘〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) |
49 | | ovif12 7352 |
. . . . . 6
⊢ (if(𝑥 = 𝐵, 𝐶, 𝑅)𝐻if(𝑥 = 𝐵, 𝐷, 𝑆)) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆)) |
50 | 48, 49 | eqtr3i 2768 |
. . . . 5
⊢ (𝐻‘〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆)) |
51 | 47, 50 | eqtrdi 2795 |
. . . 4
⊢ (𝑦 = 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉 → (𝐻‘𝑦) = if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))) |
52 | 41, 42, 46, 51 | fmptco 6983 |
. . 3
⊢ (𝜑 → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉)) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆)))) |
53 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅) |
54 | 53, 33 | dmmptd 6562 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝑅) = 𝐴) |
55 | | limccnp2.c |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵)) |
56 | | limcrcl 24943 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝑅):dom (𝑥 ∈ 𝐴 ↦ 𝑅)⟶ℂ ∧ dom (𝑥 ∈ 𝐴 ↦ 𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝑅):dom (𝑥 ∈ 𝐴 ↦ 𝑅)⟶ℂ ∧ dom (𝑥 ∈ 𝐴 ↦ 𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
58 | 57 | simp2d 1141 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝑅) ⊆ ℂ) |
59 | 54, 58 | eqsstrrd 3956 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
60 | 57 | simp3d 1142 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℂ) |
61 | 60 | snssd 4739 |
. . . . . . . . 9
⊢ (𝜑 → {𝐵} ⊆ ℂ) |
62 | 59, 61 | unssd 4116 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ) |
63 | | resttopon 22220 |
. . . . . . . 8
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) →
(𝐾 ↾t
(𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
64 | 7, 62, 63 | sylancr 586 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ↾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
65 | | ssun2 4103 |
. . . . . . . 8
⊢ {𝐵} ⊆ (𝐴 ∪ {𝐵}) |
66 | | snssg 4715 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵}))) |
67 | 60, 66 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵}))) |
68 | 65, 67 | mpbiri 257 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (𝐴 ∪ {𝐵})) |
69 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑋 ⊆ ℂ) |
70 | 69, 33 | sseldd 3918 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ ℂ) |
71 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
72 | 59, 60, 70, 71, 6 | limcmpt 24952 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, 𝑅)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
73 | 55, 72 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, 𝑅)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
74 | | limccnp2.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑆) limℂ 𝐵)) |
75 | 11 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ⊆ ℂ) |
76 | 75, 38 | sseldd 3918 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ ℂ) |
77 | 59, 60, 76, 71, 6 | limcmpt 24952 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑆) limℂ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐷, 𝑆)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
78 | 74, 77 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐷, 𝑆)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
79 | 64, 43, 43, 68, 73, 78 | txcnp 22679 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵)) |
80 | 9 | topontopi 21972 |
. . . . . . . 8
⊢ (𝐾 ×t 𝐾) ∈ Top |
81 | 80 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ×t 𝐾) ∈ Top) |
82 | 41 | fmpttd 6971 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉):(𝐴 ∪ {𝐵})⟶(𝑋 × 𝑌)) |
83 | | toponuni 21971 |
. . . . . . . . . 10
⊢ ((𝐾 ↾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = ∪ (𝐾 ↾t (𝐴 ∪ {𝐵}))) |
84 | 64, 83 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∪ {𝐵}) = ∪ (𝐾 ↾t (𝐴 ∪ {𝐵}))) |
85 | 84 | feq2d 6570 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉):(𝐴 ∪ {𝐵})⟶(𝑋 × 𝑌) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉):∪ (𝐾 ↾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌))) |
86 | 82, 85 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉):∪ (𝐾 ↾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌)) |
87 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ (𝐾
↾t (𝐴
∪ {𝐵})) = ∪ (𝐾
↾t (𝐴
∪ {𝐵})) |
88 | 9 | toponunii 21973 |
. . . . . . . 8
⊢ (ℂ
× ℂ) = ∪ (𝐾 ×t 𝐾) |
89 | 87, 88 | cnprest2 22349 |
. . . . . . 7
⊢ (((𝐾 ×t 𝐾) ∈ Top ∧ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉):∪ (𝐾 ↾t (𝐴 ∪ {𝐵}))⟶(𝑋 × 𝑌) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) →
((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵))) |
90 | 81, 86, 13, 89 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP (𝐾 ×t 𝐾))‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵))) |
91 | 79, 90 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵)) |
92 | 5 | oveq2i 7266 |
. . . . . 6
⊢ ((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐽) = ((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))) |
93 | 92 | fveq1i 6757 |
. . . . 5
⊢ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) = (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)))‘𝐵) |
94 | 91, 93 | eleqtrrdi 2850 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵)) |
95 | | iftrue 4462 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐶, 𝑅) = 𝐶) |
96 | | iftrue 4462 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐷, 𝑆) = 𝐷) |
97 | 95, 96 | opeq12d 4809 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉 = 〈𝐶, 𝐷〉) |
98 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) |
99 | | opex 5373 |
. . . . . . . 8
⊢
〈𝐶, 𝐷〉 ∈ V |
100 | 97, 98, 99 | fvmpt 6857 |
. . . . . . 7
⊢ (𝐵 ∈ (𝐴 ∪ {𝐵}) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉)‘𝐵) = 〈𝐶, 𝐷〉) |
101 | 68, 100 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉)‘𝐵) = 〈𝐶, 𝐷〉) |
102 | 101 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 → ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉)‘𝐵)) = ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) |
103 | 1, 102 | eleqtrrd 2842 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉)‘𝐵))) |
104 | | cnpco 22326 |
. . . 4
⊢ (((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) ∧ 𝐻 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉)‘𝐵))) → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
105 | 94, 103, 104 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐻 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ 〈if(𝑥 = 𝐵, 𝐶, 𝑅), if(𝑥 = 𝐵, 𝐷, 𝑆)〉)) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
106 | 52, 105 | eqeltrrd 2840 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
107 | 45 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻:(𝑋 × 𝑌)⟶ℂ) |
108 | 107, 33, 38 | fovrnd 7422 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅𝐻𝑆) ∈ ℂ) |
109 | 59, 60, 108, 71, 6 | limcmpt 24952 |
. 2
⊢ (𝜑 → ((𝐶𝐻𝐷) ∈ ((𝑥 ∈ 𝐴 ↦ (𝑅𝐻𝑆)) limℂ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐶𝐻𝐷), (𝑅𝐻𝑆))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
110 | 106, 109 | mpbird 256 |
1
⊢ (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥 ∈ 𝐴 ↦ (𝑅𝐻𝑆)) limℂ 𝐵)) |