![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2l | Structured version Visualization version GIF version |
Description: Lemma for lclkr 40404. Eliminate the π β 0, π β 0 hypotheses. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2f.h | β’ π» = (LHypβπΎ) |
lclkrlem2f.o | β’ β₯ = ((ocHβπΎ)βπ) |
lclkrlem2f.u | β’ π = ((DVecHβπΎ)βπ) |
lclkrlem2f.v | β’ π = (Baseβπ) |
lclkrlem2f.s | β’ π = (Scalarβπ) |
lclkrlem2f.q | β’ π = (0gβπ) |
lclkrlem2f.z | β’ 0 = (0gβπ) |
lclkrlem2f.a | β’ β = (LSSumβπ) |
lclkrlem2f.n | β’ π = (LSpanβπ) |
lclkrlem2f.f | β’ πΉ = (LFnlβπ) |
lclkrlem2f.j | β’ π½ = (LSHypβπ) |
lclkrlem2f.l | β’ πΏ = (LKerβπ) |
lclkrlem2f.d | β’ π· = (LDualβπ) |
lclkrlem2f.p | β’ + = (+gβπ·) |
lclkrlem2f.k | β’ (π β (πΎ β HL β§ π β π»)) |
lclkrlem2f.b | β’ (π β π΅ β (π β { 0 })) |
lclkrlem2f.e | β’ (π β πΈ β πΉ) |
lclkrlem2f.g | β’ (π β πΊ β πΉ) |
lclkrlem2f.le | β’ (π β (πΏβπΈ) = ( β₯ β{π})) |
lclkrlem2f.lg | β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
lclkrlem2f.kb | β’ (π β ((πΈ + πΊ)βπ΅) = π) |
lclkrlem2f.nx | β’ (π β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
lclkrlem2l.x | β’ (π β π β π) |
lclkrlem2l.y | β’ (π β π β π) |
Ref | Expression |
---|---|
lclkrlem2l | β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2f.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | lclkrlem2f.o | . . 3 β’ β₯ = ((ocHβπΎ)βπ) | |
3 | lclkrlem2f.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
4 | lclkrlem2f.v | . . 3 β’ π = (Baseβπ) | |
5 | lclkrlem2f.s | . . 3 β’ π = (Scalarβπ) | |
6 | lclkrlem2f.q | . . 3 β’ π = (0gβπ) | |
7 | lclkrlem2f.z | . . 3 β’ 0 = (0gβπ) | |
8 | lclkrlem2f.a | . . 3 β’ β = (LSSumβπ) | |
9 | lclkrlem2f.n | . . 3 β’ π = (LSpanβπ) | |
10 | lclkrlem2f.f | . . 3 β’ πΉ = (LFnlβπ) | |
11 | lclkrlem2f.j | . . 3 β’ π½ = (LSHypβπ) | |
12 | lclkrlem2f.l | . . 3 β’ πΏ = (LKerβπ) | |
13 | lclkrlem2f.d | . . 3 β’ π· = (LDualβπ) | |
14 | lclkrlem2f.p | . . 3 β’ + = (+gβπ·) | |
15 | lclkrlem2f.k | . . . 4 β’ (π β (πΎ β HL β§ π β π»)) | |
16 | 15 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β (πΎ β HL β§ π β π»)) |
17 | lclkrlem2f.b | . . . 4 β’ (π β π΅ β (π β { 0 })) | |
18 | 17 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β π΅ β (π β { 0 })) |
19 | lclkrlem2f.e | . . . 4 β’ (π β πΈ β πΉ) | |
20 | 19 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β πΈ β πΉ) |
21 | lclkrlem2f.g | . . . 4 β’ (π β πΊ β πΉ) | |
22 | 21 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β πΊ β πΉ) |
23 | lclkrlem2f.le | . . . 4 β’ (π β (πΏβπΈ) = ( β₯ β{π})) | |
24 | 23 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β (πΏβπΈ) = ( β₯ β{π})) |
25 | lclkrlem2f.lg | . . . 4 β’ (π β (πΏβπΊ) = ( β₯ β{π})) | |
26 | 25 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β (πΏβπΊ) = ( β₯ β{π})) |
27 | lclkrlem2f.kb | . . . 4 β’ (π β ((πΈ + πΊ)βπ΅) = π) | |
28 | 27 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β ((πΈ + πΊ)βπ΅) = π) |
29 | lclkrlem2f.nx | . . . 4 β’ (π β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) | |
30 | 29 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
31 | simpr 486 | . . 3 β’ ((π β§ π = 0 ) β π = 0 ) | |
32 | lclkrlem2l.y | . . . 4 β’ (π β π β π) | |
33 | 32 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β π β π) |
34 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31, 33 | lclkrlem2k 40388 | . 2 β’ ((π β§ π = 0 ) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
35 | 15 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β (πΎ β HL β§ π β π»)) |
36 | 17 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β π΅ β (π β { 0 })) |
37 | 19 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β πΈ β πΉ) |
38 | 21 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β πΊ β πΉ) |
39 | 23 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β (πΏβπΈ) = ( β₯ β{π})) |
40 | 25 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β (πΏβπΊ) = ( β₯ β{π})) |
41 | 27 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β ((πΈ + πΊ)βπ΅) = π) |
42 | 29 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
43 | lclkrlem2l.x | . . . 4 β’ (π β π β π) | |
44 | 43 | adantr 482 | . . 3 β’ ((π β§ π = 0 ) β π β π) |
45 | simpr 486 | . . 3 β’ ((π β§ π = 0 ) β π = 0 ) | |
46 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45 | lclkrlem2j 40387 | . 2 β’ ((π β§ π = 0 ) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
47 | 15 | adantr 482 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β (πΎ β HL β§ π β π»)) |
48 | 17 | adantr 482 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β π΅ β (π β { 0 })) |
49 | 19 | adantr 482 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β πΈ β πΉ) |
50 | 21 | adantr 482 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β πΊ β πΉ) |
51 | 23 | adantr 482 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β (πΏβπΈ) = ( β₯ β{π})) |
52 | 25 | adantr 482 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β (πΏβπΊ) = ( β₯ β{π})) |
53 | 27 | adantr 482 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β ((πΈ + πΊ)βπ΅) = π) |
54 | 29 | adantr 482 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
55 | 43 | adantr 482 | . . . 4 β’ ((π β§ (π β 0 β§ π β 0 )) β π β π) |
56 | simprl 770 | . . . 4 β’ ((π β§ (π β 0 β§ π β 0 )) β π β 0 ) | |
57 | eldifsn 4791 | . . . 4 β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) | |
58 | 55, 56, 57 | sylanbrc 584 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β π β (π β { 0 })) |
59 | 32 | adantr 482 | . . . 4 β’ ((π β§ (π β 0 β§ π β 0 )) β π β π) |
60 | simprr 772 | . . . 4 β’ ((π β§ (π β 0 β§ π β 0 )) β π β 0 ) | |
61 | eldifsn 4791 | . . . 4 β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) | |
62 | 59, 60, 61 | sylanbrc 584 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β π β (π β { 0 })) |
63 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 47, 48, 49, 50, 51, 52, 53, 54, 58, 62 | lclkrlem2i 40386 | . 2 β’ ((π β§ (π β 0 β§ π β 0 )) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
64 | 34, 46, 63 | pm2.61da2ne 3031 | 1 β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 β¨ wo 846 = wceq 1542 β wcel 2107 β wne 2941 β cdif 3946 {csn 4629 βcfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 Scalarcsca 17200 0gc0g 17385 LSSumclsm 19502 LSpanclspn 20582 LSHypclsh 37845 LFnlclfn 37927 LKerclk 37955 LDualcld 37993 HLchlt 38220 LHypclh 38855 DVecHcdvh 39949 ocHcoch 40218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-riotaBAD 37823 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-undef 8258 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-0g 17387 df-mre 17530 df-mrc 17531 df-acs 17533 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-p1 18379 df-lat 18385 df-clat 18452 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-cntz 19181 df-oppg 19210 df-lsm 19504 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 df-drng 20359 df-lmod 20473 df-lss 20543 df-lsp 20583 df-lvec 20714 df-lsatoms 37846 df-lshyp 37847 df-lcv 37889 df-lfl 37928 df-lkr 37956 df-ldual 37994 df-oposet 38046 df-ol 38048 df-oml 38049 df-covers 38136 df-ats 38137 df-atl 38168 df-cvlat 38192 df-hlat 38221 df-llines 38369 df-lplanes 38370 df-lvols 38371 df-lines 38372 df-psubsp 38374 df-pmap 38375 df-padd 38667 df-lhyp 38859 df-laut 38860 df-ldil 38975 df-ltrn 38976 df-trl 39030 df-tgrp 39614 df-tendo 39626 df-edring 39628 df-dveca 39874 df-disoa 39900 df-dvech 39950 df-dib 40010 df-dic 40044 df-dih 40100 df-doch 40219 df-djh 40266 |
This theorem is referenced by: lclkrlem2q 40394 |
Copyright terms: Public domain | W3C validator |