| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2l | Structured version Visualization version GIF version | ||
| Description: Lemma for lclkr 41552. Eliminate the 𝑋 ≠ 0, 𝑌 ≠ 0 hypotheses. (Contributed by NM, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| lclkrlem2f.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lclkrlem2f.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lclkrlem2f.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lclkrlem2f.v | ⊢ 𝑉 = (Base‘𝑈) |
| lclkrlem2f.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lclkrlem2f.q | ⊢ 𝑄 = (0g‘𝑆) |
| lclkrlem2f.z | ⊢ 0 = (0g‘𝑈) |
| lclkrlem2f.a | ⊢ ⊕ = (LSSum‘𝑈) |
| lclkrlem2f.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| lclkrlem2f.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lclkrlem2f.j | ⊢ 𝐽 = (LSHyp‘𝑈) |
| lclkrlem2f.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lclkrlem2f.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lclkrlem2f.p | ⊢ + = (+g‘𝐷) |
| lclkrlem2f.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lclkrlem2f.b | ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) |
| lclkrlem2f.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
| lclkrlem2f.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lclkrlem2f.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
| lclkrlem2f.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
| lclkrlem2f.kb | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
| lclkrlem2f.nx | ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
| lclkrlem2l.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lclkrlem2l.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lclkrlem2l | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lclkrlem2f.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | lclkrlem2f.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 3 | lclkrlem2f.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | lclkrlem2f.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | lclkrlem2f.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 6 | lclkrlem2f.q | . . 3 ⊢ 𝑄 = (0g‘𝑆) | |
| 7 | lclkrlem2f.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 8 | lclkrlem2f.a | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
| 9 | lclkrlem2f.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 10 | lclkrlem2f.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 11 | lclkrlem2f.j | . . 3 ⊢ 𝐽 = (LSHyp‘𝑈) | |
| 12 | lclkrlem2f.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 13 | lclkrlem2f.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
| 14 | lclkrlem2f.p | . . 3 ⊢ + = (+g‘𝐷) | |
| 15 | lclkrlem2f.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 17 | lclkrlem2f.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) | |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝐵 ∈ (𝑉 ∖ { 0 })) |
| 19 | lclkrlem2f.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝐸 ∈ 𝐹) |
| 21 | lclkrlem2f.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝐺 ∈ 𝐹) |
| 23 | lclkrlem2f.le | . . . 4 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
| 25 | lclkrlem2f.lg | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
| 27 | lclkrlem2f.kb | . . . 4 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) | |
| 28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
| 29 | lclkrlem2f.nx | . . . 4 ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) | |
| 30 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
| 31 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝑋 = 0 ) | |
| 32 | lclkrlem2l.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 33 | 32 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝑌 ∈ 𝑉) |
| 34 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31, 33 | lclkrlem2k 41536 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
| 35 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 36 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝐵 ∈ (𝑉 ∖ { 0 })) |
| 37 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝐸 ∈ 𝐹) |
| 38 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝐺 ∈ 𝐹) |
| 39 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
| 40 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
| 41 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
| 42 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
| 43 | lclkrlem2l.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 44 | 43 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑋 ∈ 𝑉) |
| 45 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑌 = 0 ) | |
| 46 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45 | lclkrlem2j 41535 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
| 47 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 48 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝐵 ∈ (𝑉 ∖ { 0 })) |
| 49 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝐸 ∈ 𝐹) |
| 50 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝐺 ∈ 𝐹) |
| 51 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
| 52 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
| 53 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
| 54 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
| 55 | 43 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑋 ∈ 𝑉) |
| 56 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑋 ≠ 0 ) | |
| 57 | eldifsn 4762 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
| 58 | 55, 56, 57 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 59 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑌 ∈ 𝑉) |
| 60 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑌 ≠ 0 ) | |
| 61 | eldifsn 4762 | . . . 4 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) | |
| 62 | 59, 60, 61 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 63 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 47, 48, 49, 50, 51, 52, 53, 54, 58, 62 | lclkrlem2i 41534 | . 2 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
| 64 | 34, 46, 63 | pm2.61da2ne 3020 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Scalarcsca 17274 0gc0g 17453 LSSumclsm 19615 LSpanclspn 20928 LSHypclsh 38993 LFnlclfn 39075 LKerclk 39103 LDualcld 39141 HLchlt 39368 LHypclh 40003 DVecHcdvh 41097 ocHcoch 41366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-riotaBAD 38971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-undef 8272 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-0g 17455 df-mre 17598 df-mrc 17599 df-acs 17601 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-oppg 19329 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lvec 21061 df-lsatoms 38994 df-lshyp 38995 df-lcv 39037 df-lfl 39076 df-lkr 39104 df-ldual 39142 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39517 df-lplanes 39518 df-lvols 39519 df-lines 39520 df-psubsp 39522 df-pmap 39523 df-padd 39815 df-lhyp 40007 df-laut 40008 df-ldil 40123 df-ltrn 40124 df-trl 40178 df-tgrp 40762 df-tendo 40774 df-edring 40776 df-dveca 41022 df-disoa 41048 df-dvech 41098 df-dib 41158 df-dic 41192 df-dih 41248 df-doch 41367 df-djh 41414 |
| This theorem is referenced by: lclkrlem2q 41542 |
| Copyright terms: Public domain | W3C validator |