| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2l | Structured version Visualization version GIF version | ||
| Description: Lemma for lclkr 41532. Eliminate the 𝑋 ≠ 0, 𝑌 ≠ 0 hypotheses. (Contributed by NM, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| lclkrlem2f.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lclkrlem2f.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lclkrlem2f.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lclkrlem2f.v | ⊢ 𝑉 = (Base‘𝑈) |
| lclkrlem2f.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lclkrlem2f.q | ⊢ 𝑄 = (0g‘𝑆) |
| lclkrlem2f.z | ⊢ 0 = (0g‘𝑈) |
| lclkrlem2f.a | ⊢ ⊕ = (LSSum‘𝑈) |
| lclkrlem2f.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| lclkrlem2f.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lclkrlem2f.j | ⊢ 𝐽 = (LSHyp‘𝑈) |
| lclkrlem2f.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lclkrlem2f.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lclkrlem2f.p | ⊢ + = (+g‘𝐷) |
| lclkrlem2f.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lclkrlem2f.b | ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) |
| lclkrlem2f.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
| lclkrlem2f.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lclkrlem2f.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
| lclkrlem2f.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
| lclkrlem2f.kb | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
| lclkrlem2f.nx | ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
| lclkrlem2l.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lclkrlem2l.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lclkrlem2l | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lclkrlem2f.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | lclkrlem2f.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 3 | lclkrlem2f.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | lclkrlem2f.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | lclkrlem2f.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 6 | lclkrlem2f.q | . . 3 ⊢ 𝑄 = (0g‘𝑆) | |
| 7 | lclkrlem2f.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 8 | lclkrlem2f.a | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
| 9 | lclkrlem2f.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 10 | lclkrlem2f.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 11 | lclkrlem2f.j | . . 3 ⊢ 𝐽 = (LSHyp‘𝑈) | |
| 12 | lclkrlem2f.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 13 | lclkrlem2f.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
| 14 | lclkrlem2f.p | . . 3 ⊢ + = (+g‘𝐷) | |
| 15 | lclkrlem2f.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 17 | lclkrlem2f.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) | |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝐵 ∈ (𝑉 ∖ { 0 })) |
| 19 | lclkrlem2f.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝐸 ∈ 𝐹) |
| 21 | lclkrlem2f.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝐺 ∈ 𝐹) |
| 23 | lclkrlem2f.le | . . . 4 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
| 25 | lclkrlem2f.lg | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
| 27 | lclkrlem2f.kb | . . . 4 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) | |
| 28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
| 29 | lclkrlem2f.nx | . . . 4 ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) | |
| 30 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
| 31 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝑋 = 0 ) | |
| 32 | lclkrlem2l.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 33 | 32 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝑌 ∈ 𝑉) |
| 34 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31, 33 | lclkrlem2k 41516 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
| 35 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 36 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝐵 ∈ (𝑉 ∖ { 0 })) |
| 37 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝐸 ∈ 𝐹) |
| 38 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝐺 ∈ 𝐹) |
| 39 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
| 40 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
| 41 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
| 42 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
| 43 | lclkrlem2l.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 44 | 43 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑋 ∈ 𝑉) |
| 45 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑌 = 0 ) | |
| 46 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45 | lclkrlem2j 41515 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
| 47 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 48 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝐵 ∈ (𝑉 ∖ { 0 })) |
| 49 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝐸 ∈ 𝐹) |
| 50 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝐺 ∈ 𝐹) |
| 51 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
| 52 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
| 53 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
| 54 | 29 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
| 55 | 43 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑋 ∈ 𝑉) |
| 56 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑋 ≠ 0 ) | |
| 57 | eldifsn 4740 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
| 58 | 55, 56, 57 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 59 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑌 ∈ 𝑉) |
| 60 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑌 ≠ 0 ) | |
| 61 | eldifsn 4740 | . . . 4 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) | |
| 62 | 59, 60, 61 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 63 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 47, 48, 49, 50, 51, 52, 53, 54, 58, 62 | lclkrlem2i 41514 | . 2 ⊢ ((𝜑 ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
| 64 | 34, 46, 63 | pm2.61da2ne 3013 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 +gcplusg 17180 Scalarcsca 17183 0gc0g 17362 LSSumclsm 19532 LSpanclspn 20893 LSHypclsh 38973 LFnlclfn 39055 LKerclk 39083 LDualcld 39121 HLchlt 39348 LHypclh 39983 DVecHcdvh 41077 ocHcoch 41346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38951 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-n0 12404 df-z 12491 df-uz 12755 df-fz 13430 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-0g 17364 df-mre 17507 df-mrc 17508 df-acs 17510 df-proset 18219 df-poset 18238 df-plt 18253 df-lub 18269 df-glb 18270 df-join 18271 df-meet 18272 df-p0 18348 df-p1 18349 df-lat 18357 df-clat 18424 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-grp 18834 df-minusg 18835 df-sbg 18836 df-subg 19021 df-cntz 19215 df-oppg 19244 df-lsm 19534 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-oppr 20241 df-dvdsr 20261 df-unit 20262 df-invr 20292 df-dvr 20305 df-drng 20635 df-lmod 20784 df-lss 20854 df-lsp 20894 df-lvec 21026 df-lsatoms 38974 df-lshyp 38975 df-lcv 39017 df-lfl 39056 df-lkr 39084 df-ldual 39122 df-oposet 39174 df-ol 39176 df-oml 39177 df-covers 39264 df-ats 39265 df-atl 39296 df-cvlat 39320 df-hlat 39349 df-llines 39497 df-lplanes 39498 df-lvols 39499 df-lines 39500 df-psubsp 39502 df-pmap 39503 df-padd 39795 df-lhyp 39987 df-laut 39988 df-ldil 40103 df-ltrn 40104 df-trl 40158 df-tgrp 40742 df-tendo 40754 df-edring 40756 df-dveca 41002 df-disoa 41028 df-dvech 41078 df-dib 41138 df-dic 41172 df-dih 41228 df-doch 41347 df-djh 41394 |
| This theorem is referenced by: lclkrlem2q 41522 |
| Copyright terms: Public domain | W3C validator |