![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2l | Structured version Visualization version GIF version |
Description: Lemma for lclkr 41061. Eliminate the π β 0, π β 0 hypotheses. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2f.h | β’ π» = (LHypβπΎ) |
lclkrlem2f.o | β’ β₯ = ((ocHβπΎ)βπ) |
lclkrlem2f.u | β’ π = ((DVecHβπΎ)βπ) |
lclkrlem2f.v | β’ π = (Baseβπ) |
lclkrlem2f.s | β’ π = (Scalarβπ) |
lclkrlem2f.q | β’ π = (0gβπ) |
lclkrlem2f.z | β’ 0 = (0gβπ) |
lclkrlem2f.a | β’ β = (LSSumβπ) |
lclkrlem2f.n | β’ π = (LSpanβπ) |
lclkrlem2f.f | β’ πΉ = (LFnlβπ) |
lclkrlem2f.j | β’ π½ = (LSHypβπ) |
lclkrlem2f.l | β’ πΏ = (LKerβπ) |
lclkrlem2f.d | β’ π· = (LDualβπ) |
lclkrlem2f.p | β’ + = (+gβπ·) |
lclkrlem2f.k | β’ (π β (πΎ β HL β§ π β π»)) |
lclkrlem2f.b | β’ (π β π΅ β (π β { 0 })) |
lclkrlem2f.e | β’ (π β πΈ β πΉ) |
lclkrlem2f.g | β’ (π β πΊ β πΉ) |
lclkrlem2f.le | β’ (π β (πΏβπΈ) = ( β₯ β{π})) |
lclkrlem2f.lg | β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
lclkrlem2f.kb | β’ (π β ((πΈ + πΊ)βπ΅) = π) |
lclkrlem2f.nx | β’ (π β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
lclkrlem2l.x | β’ (π β π β π) |
lclkrlem2l.y | β’ (π β π β π) |
Ref | Expression |
---|---|
lclkrlem2l | β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2f.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | lclkrlem2f.o | . . 3 β’ β₯ = ((ocHβπΎ)βπ) | |
3 | lclkrlem2f.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
4 | lclkrlem2f.v | . . 3 β’ π = (Baseβπ) | |
5 | lclkrlem2f.s | . . 3 β’ π = (Scalarβπ) | |
6 | lclkrlem2f.q | . . 3 β’ π = (0gβπ) | |
7 | lclkrlem2f.z | . . 3 β’ 0 = (0gβπ) | |
8 | lclkrlem2f.a | . . 3 β’ β = (LSSumβπ) | |
9 | lclkrlem2f.n | . . 3 β’ π = (LSpanβπ) | |
10 | lclkrlem2f.f | . . 3 β’ πΉ = (LFnlβπ) | |
11 | lclkrlem2f.j | . . 3 β’ π½ = (LSHypβπ) | |
12 | lclkrlem2f.l | . . 3 β’ πΏ = (LKerβπ) | |
13 | lclkrlem2f.d | . . 3 β’ π· = (LDualβπ) | |
14 | lclkrlem2f.p | . . 3 β’ + = (+gβπ·) | |
15 | lclkrlem2f.k | . . . 4 β’ (π β (πΎ β HL β§ π β π»)) | |
16 | 15 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β (πΎ β HL β§ π β π»)) |
17 | lclkrlem2f.b | . . . 4 β’ (π β π΅ β (π β { 0 })) | |
18 | 17 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β π΅ β (π β { 0 })) |
19 | lclkrlem2f.e | . . . 4 β’ (π β πΈ β πΉ) | |
20 | 19 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β πΈ β πΉ) |
21 | lclkrlem2f.g | . . . 4 β’ (π β πΊ β πΉ) | |
22 | 21 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β πΊ β πΉ) |
23 | lclkrlem2f.le | . . . 4 β’ (π β (πΏβπΈ) = ( β₯ β{π})) | |
24 | 23 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β (πΏβπΈ) = ( β₯ β{π})) |
25 | lclkrlem2f.lg | . . . 4 β’ (π β (πΏβπΊ) = ( β₯ β{π})) | |
26 | 25 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β (πΏβπΊ) = ( β₯ β{π})) |
27 | lclkrlem2f.kb | . . . 4 β’ (π β ((πΈ + πΊ)βπ΅) = π) | |
28 | 27 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β ((πΈ + πΊ)βπ΅) = π) |
29 | lclkrlem2f.nx | . . . 4 β’ (π β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) | |
30 | 29 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
31 | simpr 483 | . . 3 β’ ((π β§ π = 0 ) β π = 0 ) | |
32 | lclkrlem2l.y | . . . 4 β’ (π β π β π) | |
33 | 32 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β π β π) |
34 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31, 33 | lclkrlem2k 41045 | . 2 β’ ((π β§ π = 0 ) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
35 | 15 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β (πΎ β HL β§ π β π»)) |
36 | 17 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β π΅ β (π β { 0 })) |
37 | 19 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β πΈ β πΉ) |
38 | 21 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β πΊ β πΉ) |
39 | 23 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β (πΏβπΈ) = ( β₯ β{π})) |
40 | 25 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β (πΏβπΊ) = ( β₯ β{π})) |
41 | 27 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β ((πΈ + πΊ)βπ΅) = π) |
42 | 29 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
43 | lclkrlem2l.x | . . . 4 β’ (π β π β π) | |
44 | 43 | adantr 479 | . . 3 β’ ((π β§ π = 0 ) β π β π) |
45 | simpr 483 | . . 3 β’ ((π β§ π = 0 ) β π = 0 ) | |
46 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45 | lclkrlem2j 41044 | . 2 β’ ((π β§ π = 0 ) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
47 | 15 | adantr 479 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β (πΎ β HL β§ π β π»)) |
48 | 17 | adantr 479 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β π΅ β (π β { 0 })) |
49 | 19 | adantr 479 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β πΈ β πΉ) |
50 | 21 | adantr 479 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β πΊ β πΉ) |
51 | 23 | adantr 479 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β (πΏβπΈ) = ( β₯ β{π})) |
52 | 25 | adantr 479 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β (πΏβπΊ) = ( β₯ β{π})) |
53 | 27 | adantr 479 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β ((πΈ + πΊ)βπ΅) = π) |
54 | 29 | adantr 479 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
55 | 43 | adantr 479 | . . . 4 β’ ((π β§ (π β 0 β§ π β 0 )) β π β π) |
56 | simprl 769 | . . . 4 β’ ((π β§ (π β 0 β§ π β 0 )) β π β 0 ) | |
57 | eldifsn 4786 | . . . 4 β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) | |
58 | 55, 56, 57 | sylanbrc 581 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β π β (π β { 0 })) |
59 | 32 | adantr 479 | . . . 4 β’ ((π β§ (π β 0 β§ π β 0 )) β π β π) |
60 | simprr 771 | . . . 4 β’ ((π β§ (π β 0 β§ π β 0 )) β π β 0 ) | |
61 | eldifsn 4786 | . . . 4 β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) | |
62 | 59, 60, 61 | sylanbrc 581 | . . 3 β’ ((π β§ (π β 0 β§ π β 0 )) β π β (π β { 0 })) |
63 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 47, 48, 49, 50, 51, 52, 53, 54, 58, 62 | lclkrlem2i 41043 | . 2 β’ ((π β§ (π β 0 β§ π β 0 )) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
64 | 34, 46, 63 | pm2.61da2ne 3020 | 1 β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β¨ wo 845 = wceq 1533 β wcel 2098 β wne 2930 β cdif 3937 {csn 4624 βcfv 6542 (class class class)co 7415 Basecbs 17177 +gcplusg 17230 Scalarcsca 17233 0gc0g 17418 LSSumclsm 19591 LSpanclspn 20857 LSHypclsh 38502 LFnlclfn 38584 LKerclk 38612 LDualcld 38650 HLchlt 38877 LHypclh 39512 DVecHcdvh 40606 ocHcoch 40875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-riotaBAD 38480 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-tpos 8228 df-undef 8275 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-0g 17420 df-mre 17563 df-mrc 17564 df-acs 17566 df-proset 18284 df-poset 18302 df-plt 18319 df-lub 18335 df-glb 18336 df-join 18337 df-meet 18338 df-p0 18414 df-p1 18415 df-lat 18421 df-clat 18488 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-cntz 19270 df-oppg 19299 df-lsm 19593 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-dvr 20342 df-drng 20628 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lvec 20990 df-lsatoms 38503 df-lshyp 38504 df-lcv 38546 df-lfl 38585 df-lkr 38613 df-ldual 38651 df-oposet 38703 df-ol 38705 df-oml 38706 df-covers 38793 df-ats 38794 df-atl 38825 df-cvlat 38849 df-hlat 38878 df-llines 39026 df-lplanes 39027 df-lvols 39028 df-lines 39029 df-psubsp 39031 df-pmap 39032 df-padd 39324 df-lhyp 39516 df-laut 39517 df-ldil 39632 df-ltrn 39633 df-trl 39687 df-tgrp 40271 df-tendo 40283 df-edring 40285 df-dveca 40531 df-disoa 40557 df-dvech 40607 df-dib 40667 df-dic 40701 df-dih 40757 df-doch 40876 df-djh 40923 |
This theorem is referenced by: lclkrlem2q 41051 |
Copyright terms: Public domain | W3C validator |