MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabvd Structured version   Visualization version   GIF version

Theorem isabvd 19593
Description: Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
isabvd.a (𝜑𝐴 = (AbsVal‘𝑅))
isabvd.b (𝜑𝐵 = (Base‘𝑅))
isabvd.p (𝜑+ = (+g𝑅))
isabvd.t (𝜑· = (.r𝑅))
isabvd.z (𝜑0 = (0g𝑅))
isabvd.1 (𝜑𝑅 ∈ Ring)
isabvd.2 (𝜑𝐹:𝐵⟶ℝ)
isabvd.3 (𝜑 → (𝐹0 ) = 0)
isabvd.4 ((𝜑𝑥𝐵𝑥0 ) → 0 < (𝐹𝑥))
isabvd.5 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
isabvd.6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
isabvd (𝜑𝐹𝐴)
Distinct variable groups:   𝑥,𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   · (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isabvd
StepHypRef Expression
1 isabvd.2 . . . . . 6 (𝜑𝐹:𝐵⟶ℝ)
2 isabvd.b . . . . . . 7 (𝜑𝐵 = (Base‘𝑅))
32feq2d 6502 . . . . . 6 (𝜑 → (𝐹:𝐵⟶ℝ ↔ 𝐹:(Base‘𝑅)⟶ℝ))
41, 3mpbid 234 . . . . 5 (𝜑𝐹:(Base‘𝑅)⟶ℝ)
54ffnd 6517 . . . 4 (𝜑𝐹 Fn (Base‘𝑅))
64ffvelrnda 6853 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ ℝ)
7 0le0 11741 . . . . . . . . . 10 0 ≤ 0
8 isabvd.z . . . . . . . . . . . 12 (𝜑0 = (0g𝑅))
98fveq2d 6676 . . . . . . . . . . 11 (𝜑 → (𝐹0 ) = (𝐹‘(0g𝑅)))
10 isabvd.3 . . . . . . . . . . 11 (𝜑 → (𝐹0 ) = 0)
119, 10eqtr3d 2860 . . . . . . . . . 10 (𝜑 → (𝐹‘(0g𝑅)) = 0)
127, 11breqtrrid 5106 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐹‘(0g𝑅)))
1312adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 0 ≤ (𝐹‘(0g𝑅)))
14 fveq2 6672 . . . . . . . . 9 (𝑥 = (0g𝑅) → (𝐹𝑥) = (𝐹‘(0g𝑅)))
1514breq2d 5080 . . . . . . . 8 (𝑥 = (0g𝑅) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ (𝐹‘(0g𝑅))))
1613, 15syl5ibrcom 249 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = (0g𝑅) → 0 ≤ (𝐹𝑥)))
17 simp1 1132 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝜑)
18 simp2 1133 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥 ∈ (Base‘𝑅))
1923ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝐵 = (Base‘𝑅))
2018, 19eleqtrrd 2918 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥𝐵)
21 simp3 1134 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥 ≠ (0g𝑅))
2283ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 = (0g𝑅))
2321, 22neeqtrrd 3092 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥0 )
24 isabvd.4 . . . . . . . . . 10 ((𝜑𝑥𝐵𝑥0 ) → 0 < (𝐹𝑥))
2517, 20, 23, 24syl3anc 1367 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
26 0re 10645 . . . . . . . . . 10 0 ∈ ℝ
2763adant3 1128 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → (𝐹𝑥) ∈ ℝ)
28 ltle 10731 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (0 < (𝐹𝑥) → 0 ≤ (𝐹𝑥)))
2926, 27, 28sylancr 589 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → (0 < (𝐹𝑥) → 0 ≤ (𝐹𝑥)))
3025, 29mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 ≤ (𝐹𝑥))
31303expia 1117 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 ≠ (0g𝑅) → 0 ≤ (𝐹𝑥)))
3216, 31pm2.61dne 3105 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → 0 ≤ (𝐹𝑥))
33 elrege0 12845 . . . . . 6 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
346, 32, 33sylanbrc 585 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ (0[,)+∞))
3534ralrimiva 3184 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝐹𝑥) ∈ (0[,)+∞))
36 ffnfv 6884 . . . 4 (𝐹:(Base‘𝑅)⟶(0[,)+∞) ↔ (𝐹 Fn (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(𝐹𝑥) ∈ (0[,)+∞)))
375, 35, 36sylanbrc 585 . . 3 (𝜑𝐹:(Base‘𝑅)⟶(0[,)+∞))
3825gt0ne0d 11206 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → (𝐹𝑥) ≠ 0)
39383expia 1117 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 ≠ (0g𝑅) → (𝐹𝑥) ≠ 0))
4039necon4d 3042 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) = 0 → 𝑥 = (0g𝑅)))
4111adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹‘(0g𝑅)) = 0)
42 fveqeq2 6681 . . . . . . 7 (𝑥 = (0g𝑅) → ((𝐹𝑥) = 0 ↔ (𝐹‘(0g𝑅)) = 0))
4341, 42syl5ibrcom 249 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = (0g𝑅) → (𝐹𝑥) = 0))
4440, 43impbid 214 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)))
45113ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(0g𝑅)) = 0)
4645adantr 483 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(0g𝑅)) = 0)
47 oveq1 7165 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥(.r𝑅)𝑦) = ((0g𝑅)(.r𝑅)𝑦))
48 isabvd.1 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
49483ad2ant1 1129 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
50 simp3 1134 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
51 eqid 2823 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
52 eqid 2823 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
53 eqid 2823 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
5451, 52, 53ringlz 19339 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑦) = (0g𝑅))
5549, 50, 54syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑦) = (0g𝑅))
5647, 55sylan9eqr 2880 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝑥(.r𝑅)𝑦) = (0g𝑅))
5756fveq2d 6676 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(0g𝑅)))
5814, 45sylan9eqr 2880 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹𝑥) = 0)
5958oveq1d 7173 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = (0 · (𝐹𝑦)))
6043ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝐹:(Base‘𝑅)⟶ℝ)
6160, 50ffvelrnd 6854 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑦) ∈ ℝ)
6261recnd 10671 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑦) ∈ ℂ)
6362adantr 483 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹𝑦) ∈ ℂ)
6463mul02d 10840 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (0 · (𝐹𝑦)) = 0)
6559, 64eqtrd 2858 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = 0)
6646, 57, 653eqtr4d 2868 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
6745adantr 483 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(0g𝑅)) = 0)
68 oveq2 7166 . . . . . . . . . . . 12 (𝑦 = (0g𝑅) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑅)(0g𝑅)))
69 simp2 1133 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
7051, 52, 53ringrz 19340 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
7149, 69, 70syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
7268, 71sylan9eqr 2880 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝑥(.r𝑅)𝑦) = (0g𝑅))
7372fveq2d 6676 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(0g𝑅)))
74 fveq2 6672 . . . . . . . . . . . . 13 (𝑦 = (0g𝑅) → (𝐹𝑦) = (𝐹‘(0g𝑅)))
7574, 45sylan9eqr 2880 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹𝑦) = 0)
7675oveq2d 7174 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = ((𝐹𝑥) · 0))
7760, 69ffvelrnd 6854 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ ℝ)
7877recnd 10671 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ ℂ)
7978adantr 483 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹𝑥) ∈ ℂ)
8079mul01d 10841 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → ((𝐹𝑥) · 0) = 0)
8176, 80eqtrd 2858 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = 0)
8267, 73, 813eqtr4d 2868 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
83 simpl1 1187 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝜑)
84 isabvd.t . . . . . . . . . . . . 13 (𝜑· = (.r𝑅))
8583, 84syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → · = (.r𝑅))
8685oveqd 7175 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
8786fveq2d 6676 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝑥(.r𝑅)𝑦)))
88 simpl2 1188 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥 ∈ (Base‘𝑅))
8983, 2syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝐵 = (Base‘𝑅))
9088, 89eleqtrrd 2918 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥𝐵)
91 simprl 769 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥 ≠ (0g𝑅))
9283, 8syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 0 = (0g𝑅))
9391, 92neeqtrrd 3092 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥0 )
94 simpl3 1189 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦 ∈ (Base‘𝑅))
9594, 89eleqtrrd 2918 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦𝐵)
96 simprr 771 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦 ≠ (0g𝑅))
9796, 92neeqtrrd 3092 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦0 )
98 isabvd.5 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
9983, 90, 93, 95, 97, 98syl122anc 1375 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
10087, 99eqtr3d 2860 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
10166, 82, 100pm2.61da2ne 3107 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
102 oveq1 7165 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥(+g𝑅)𝑦) = ((0g𝑅)(+g𝑅)𝑦))
103 ringgrp 19304 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
10449, 103syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Grp)
105 eqid 2823 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
10651, 105, 53grplid 18135 . . . . . . . . . . . . 13 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑦) = 𝑦)
107104, 50, 106syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑦) = 𝑦)
108102, 107sylan9eqr 2880 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝑥(+g𝑅)𝑦) = 𝑦)
109108fveq2d 6676 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = (𝐹𝑦))
1107, 58breqtrrid 5106 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → 0 ≤ (𝐹𝑥))
11161, 77addge02d 11231 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ ((𝐹𝑥) + (𝐹𝑦))))
112111adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ ((𝐹𝑥) + (𝐹𝑦))))
113110, 112mpbid 234 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹𝑦) ≤ ((𝐹𝑥) + (𝐹𝑦)))
114109, 113eqbrtrd 5090 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
115 oveq2 7166 . . . . . . . . . . . 12 (𝑦 = (0g𝑅) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑅)(0g𝑅)))
11651, 105, 53grprid 18136 . . . . . . . . . . . . 13 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(0g𝑅)) = 𝑥)
117104, 69, 116syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(0g𝑅)) = 𝑥)
118115, 117sylan9eqr 2880 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝑥(+g𝑅)𝑦) = 𝑥)
119118fveq2d 6676 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = (𝐹𝑥))
1207, 75breqtrrid 5106 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → 0 ≤ (𝐹𝑦))
12177, 61addge01d 11230 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (0 ≤ (𝐹𝑦) ↔ (𝐹𝑥) ≤ ((𝐹𝑥) + (𝐹𝑦))))
122121adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (0 ≤ (𝐹𝑦) ↔ (𝐹𝑥) ≤ ((𝐹𝑥) + (𝐹𝑦))))
123120, 122mpbid 234 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹𝑥) ≤ ((𝐹𝑥) + (𝐹𝑦)))
124119, 123eqbrtrd 5090 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
125 isabvd.p . . . . . . . . . . . . 13 (𝜑+ = (+g𝑅))
12683, 125syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → + = (+g𝑅))
127126oveqd 7175 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
128127fveq2d 6676 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
129 isabvd.6 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
13083, 90, 93, 95, 97, 129syl122anc 1375 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
131128, 130eqbrtrrd 5092 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
132114, 124, 131pm2.61da2ne 3107 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
133101, 132jca 514 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))
1341333expia 1117 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑦 ∈ (Base‘𝑅) → ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))
135134ralrimiv 3183 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))
13644, 135jca 514 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))
137136ralrimiva 3184 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))
138 eqid 2823 . . . . 5 (AbsVal‘𝑅) = (AbsVal‘𝑅)
139138, 51, 105, 52, 53isabv 19592 . . . 4 (𝑅 ∈ Ring → (𝐹 ∈ (AbsVal‘𝑅) ↔ (𝐹:(Base‘𝑅)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝑅)(((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
14048, 139syl 17 . . 3 (𝜑 → (𝐹 ∈ (AbsVal‘𝑅) ↔ (𝐹:(Base‘𝑅)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝑅)(((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
14137, 137, 140mpbir2and 711 . 2 (𝜑𝐹 ∈ (AbsVal‘𝑅))
142 isabvd.a . 2 (𝜑𝐴 = (AbsVal‘𝑅))
143141, 142eleqtrrd 2918 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140   class class class wbr 5068   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   + caddc 10542   · cmul 10544  +∞cpnf 10674   < clt 10677  cle 10678  [,)cico 12743  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  0gc0g 16715  Grpcgrp 18105  Ringcrg 19299  AbsValcabv 19589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ico 12747  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-mgp 19242  df-ring 19301  df-abv 19590
This theorem is referenced by:  abvres  19612  abvtrivd  19613  absabv  20604  abvcxp  26193  padicabv  26208
  Copyright terms: Public domain W3C validator