MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabvd Structured version   Visualization version   GIF version

Theorem isabvd 19584
Description: Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
isabvd.a (𝜑𝐴 = (AbsVal‘𝑅))
isabvd.b (𝜑𝐵 = (Base‘𝑅))
isabvd.p (𝜑+ = (+g𝑅))
isabvd.t (𝜑· = (.r𝑅))
isabvd.z (𝜑0 = (0g𝑅))
isabvd.1 (𝜑𝑅 ∈ Ring)
isabvd.2 (𝜑𝐹:𝐵⟶ℝ)
isabvd.3 (𝜑 → (𝐹0 ) = 0)
isabvd.4 ((𝜑𝑥𝐵𝑥0 ) → 0 < (𝐹𝑥))
isabvd.5 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
isabvd.6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
isabvd (𝜑𝐹𝐴)
Distinct variable groups:   𝑥,𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   · (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isabvd
StepHypRef Expression
1 isabvd.2 . . . . . 6 (𝜑𝐹:𝐵⟶ℝ)
2 isabvd.b . . . . . . 7 (𝜑𝐵 = (Base‘𝑅))
32feq2d 6473 . . . . . 6 (𝜑 → (𝐹:𝐵⟶ℝ ↔ 𝐹:(Base‘𝑅)⟶ℝ))
41, 3mpbid 235 . . . . 5 (𝜑𝐹:(Base‘𝑅)⟶ℝ)
54ffnd 6488 . . . 4 (𝜑𝐹 Fn (Base‘𝑅))
64ffvelrnda 6828 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ ℝ)
7 0le0 11726 . . . . . . . . . 10 0 ≤ 0
8 isabvd.z . . . . . . . . . . . 12 (𝜑0 = (0g𝑅))
98fveq2d 6649 . . . . . . . . . . 11 (𝜑 → (𝐹0 ) = (𝐹‘(0g𝑅)))
10 isabvd.3 . . . . . . . . . . 11 (𝜑 → (𝐹0 ) = 0)
119, 10eqtr3d 2835 . . . . . . . . . 10 (𝜑 → (𝐹‘(0g𝑅)) = 0)
127, 11breqtrrid 5068 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐹‘(0g𝑅)))
1312adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 0 ≤ (𝐹‘(0g𝑅)))
14 fveq2 6645 . . . . . . . . 9 (𝑥 = (0g𝑅) → (𝐹𝑥) = (𝐹‘(0g𝑅)))
1514breq2d 5042 . . . . . . . 8 (𝑥 = (0g𝑅) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ (𝐹‘(0g𝑅))))
1613, 15syl5ibrcom 250 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = (0g𝑅) → 0 ≤ (𝐹𝑥)))
17 simp1 1133 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝜑)
18 simp2 1134 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥 ∈ (Base‘𝑅))
1923ad2ant1 1130 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝐵 = (Base‘𝑅))
2018, 19eleqtrrd 2893 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥𝐵)
21 simp3 1135 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥 ≠ (0g𝑅))
2283ad2ant1 1130 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 = (0g𝑅))
2321, 22neeqtrrd 3061 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥0 )
24 isabvd.4 . . . . . . . . . 10 ((𝜑𝑥𝐵𝑥0 ) → 0 < (𝐹𝑥))
2517, 20, 23, 24syl3anc 1368 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
26 0re 10632 . . . . . . . . . 10 0 ∈ ℝ
2763adant3 1129 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → (𝐹𝑥) ∈ ℝ)
28 ltle 10718 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (0 < (𝐹𝑥) → 0 ≤ (𝐹𝑥)))
2926, 27, 28sylancr 590 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → (0 < (𝐹𝑥) → 0 ≤ (𝐹𝑥)))
3025, 29mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 ≤ (𝐹𝑥))
31303expia 1118 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 ≠ (0g𝑅) → 0 ≤ (𝐹𝑥)))
3216, 31pm2.61dne 3073 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → 0 ≤ (𝐹𝑥))
33 elrege0 12832 . . . . . 6 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
346, 32, 33sylanbrc 586 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ (0[,)+∞))
3534ralrimiva 3149 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝐹𝑥) ∈ (0[,)+∞))
36 ffnfv 6859 . . . 4 (𝐹:(Base‘𝑅)⟶(0[,)+∞) ↔ (𝐹 Fn (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(𝐹𝑥) ∈ (0[,)+∞)))
375, 35, 36sylanbrc 586 . . 3 (𝜑𝐹:(Base‘𝑅)⟶(0[,)+∞))
3825gt0ne0d 11193 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → (𝐹𝑥) ≠ 0)
39383expia 1118 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 ≠ (0g𝑅) → (𝐹𝑥) ≠ 0))
4039necon4d 3011 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) = 0 → 𝑥 = (0g𝑅)))
4111adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹‘(0g𝑅)) = 0)
42 fveqeq2 6654 . . . . . . 7 (𝑥 = (0g𝑅) → ((𝐹𝑥) = 0 ↔ (𝐹‘(0g𝑅)) = 0))
4341, 42syl5ibrcom 250 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = (0g𝑅) → (𝐹𝑥) = 0))
4440, 43impbid 215 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)))
45113ad2ant1 1130 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(0g𝑅)) = 0)
4645adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(0g𝑅)) = 0)
47 oveq1 7142 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥(.r𝑅)𝑦) = ((0g𝑅)(.r𝑅)𝑦))
48 isabvd.1 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
49483ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
50 simp3 1135 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
51 eqid 2798 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
52 eqid 2798 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
53 eqid 2798 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
5451, 52, 53ringlz 19333 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑦) = (0g𝑅))
5549, 50, 54syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑦) = (0g𝑅))
5647, 55sylan9eqr 2855 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝑥(.r𝑅)𝑦) = (0g𝑅))
5756fveq2d 6649 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(0g𝑅)))
5814, 45sylan9eqr 2855 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹𝑥) = 0)
5958oveq1d 7150 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = (0 · (𝐹𝑦)))
6043ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝐹:(Base‘𝑅)⟶ℝ)
6160, 50ffvelrnd 6829 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑦) ∈ ℝ)
6261recnd 10658 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑦) ∈ ℂ)
6362adantr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹𝑦) ∈ ℂ)
6463mul02d 10827 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (0 · (𝐹𝑦)) = 0)
6559, 64eqtrd 2833 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = 0)
6646, 57, 653eqtr4d 2843 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
6745adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(0g𝑅)) = 0)
68 oveq2 7143 . . . . . . . . . . . 12 (𝑦 = (0g𝑅) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑅)(0g𝑅)))
69 simp2 1134 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
7051, 52, 53ringrz 19334 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
7149, 69, 70syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
7268, 71sylan9eqr 2855 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝑥(.r𝑅)𝑦) = (0g𝑅))
7372fveq2d 6649 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(0g𝑅)))
74 fveq2 6645 . . . . . . . . . . . . 13 (𝑦 = (0g𝑅) → (𝐹𝑦) = (𝐹‘(0g𝑅)))
7574, 45sylan9eqr 2855 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹𝑦) = 0)
7675oveq2d 7151 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = ((𝐹𝑥) · 0))
7760, 69ffvelrnd 6829 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ ℝ)
7877recnd 10658 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ ℂ)
7978adantr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹𝑥) ∈ ℂ)
8079mul01d 10828 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → ((𝐹𝑥) · 0) = 0)
8176, 80eqtrd 2833 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = 0)
8267, 73, 813eqtr4d 2843 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
83 simpl1 1188 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝜑)
84 isabvd.t . . . . . . . . . . . . 13 (𝜑· = (.r𝑅))
8583, 84syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → · = (.r𝑅))
8685oveqd 7152 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
8786fveq2d 6649 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝑥(.r𝑅)𝑦)))
88 simpl2 1189 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥 ∈ (Base‘𝑅))
8983, 2syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝐵 = (Base‘𝑅))
9088, 89eleqtrrd 2893 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥𝐵)
91 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥 ≠ (0g𝑅))
9283, 8syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 0 = (0g𝑅))
9391, 92neeqtrrd 3061 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥0 )
94 simpl3 1190 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦 ∈ (Base‘𝑅))
9594, 89eleqtrrd 2893 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦𝐵)
96 simprr 772 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦 ≠ (0g𝑅))
9796, 92neeqtrrd 3061 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦0 )
98 isabvd.5 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
9983, 90, 93, 95, 97, 98syl122anc 1376 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
10087, 99eqtr3d 2835 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
10166, 82, 100pm2.61da2ne 3075 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
102 oveq1 7142 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥(+g𝑅)𝑦) = ((0g𝑅)(+g𝑅)𝑦))
103 ringgrp 19295 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
10449, 103syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Grp)
105 eqid 2798 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
10651, 105, 53grplid 18125 . . . . . . . . . . . . 13 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑦) = 𝑦)
107104, 50, 106syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑦) = 𝑦)
108102, 107sylan9eqr 2855 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝑥(+g𝑅)𝑦) = 𝑦)
109108fveq2d 6649 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = (𝐹𝑦))
1107, 58breqtrrid 5068 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → 0 ≤ (𝐹𝑥))
11161, 77addge02d 11218 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ ((𝐹𝑥) + (𝐹𝑦))))
112111adantr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ ((𝐹𝑥) + (𝐹𝑦))))
113110, 112mpbid 235 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹𝑦) ≤ ((𝐹𝑥) + (𝐹𝑦)))
114109, 113eqbrtrd 5052 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
115 oveq2 7143 . . . . . . . . . . . 12 (𝑦 = (0g𝑅) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑅)(0g𝑅)))
11651, 105, 53grprid 18126 . . . . . . . . . . . . 13 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(0g𝑅)) = 𝑥)
117104, 69, 116syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(0g𝑅)) = 𝑥)
118115, 117sylan9eqr 2855 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝑥(+g𝑅)𝑦) = 𝑥)
119118fveq2d 6649 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = (𝐹𝑥))
1207, 75breqtrrid 5068 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → 0 ≤ (𝐹𝑦))
12177, 61addge01d 11217 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (0 ≤ (𝐹𝑦) ↔ (𝐹𝑥) ≤ ((𝐹𝑥) + (𝐹𝑦))))
122121adantr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (0 ≤ (𝐹𝑦) ↔ (𝐹𝑥) ≤ ((𝐹𝑥) + (𝐹𝑦))))
123120, 122mpbid 235 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹𝑥) ≤ ((𝐹𝑥) + (𝐹𝑦)))
124119, 123eqbrtrd 5052 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
125 isabvd.p . . . . . . . . . . . . 13 (𝜑+ = (+g𝑅))
12683, 125syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → + = (+g𝑅))
127126oveqd 7152 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
128127fveq2d 6649 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
129 isabvd.6 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
13083, 90, 93, 95, 97, 129syl122anc 1376 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
131128, 130eqbrtrrd 5054 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
132114, 124, 131pm2.61da2ne 3075 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
133101, 132jca 515 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))
1341333expia 1118 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑦 ∈ (Base‘𝑅) → ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))
135134ralrimiv 3148 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))
13644, 135jca 515 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))
137136ralrimiva 3149 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))
138 eqid 2798 . . . . 5 (AbsVal‘𝑅) = (AbsVal‘𝑅)
139138, 51, 105, 52, 53isabv 19583 . . . 4 (𝑅 ∈ Ring → (𝐹 ∈ (AbsVal‘𝑅) ↔ (𝐹:(Base‘𝑅)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝑅)(((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
14048, 139syl 17 . . 3 (𝜑 → (𝐹 ∈ (AbsVal‘𝑅) ↔ (𝐹:(Base‘𝑅)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝑅)(((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
14137, 137, 140mpbir2and 712 . 2 (𝜑𝐹 ∈ (AbsVal‘𝑅))
142 isabvd.a . 2 (𝜑𝐴 = (AbsVal‘𝑅))
143141, 142eleqtrrd 2893 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106   class class class wbr 5030   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531  +∞cpnf 10661   < clt 10664  cle 10665  [,)cico 12728  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  Grpcgrp 18095  Ringcrg 19290  AbsValcabv 19580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ico 12732  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19233  df-ring 19292  df-abv 19581
This theorem is referenced by:  abvres  19603  abvtrivd  19604  absabv  20148  abvcxp  26199  padicabv  26214
  Copyright terms: Public domain W3C validator