MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabvd Structured version   Visualization version   GIF version

Theorem isabvd 19703
Description: Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
isabvd.a (𝜑𝐴 = (AbsVal‘𝑅))
isabvd.b (𝜑𝐵 = (Base‘𝑅))
isabvd.p (𝜑+ = (+g𝑅))
isabvd.t (𝜑· = (.r𝑅))
isabvd.z (𝜑0 = (0g𝑅))
isabvd.1 (𝜑𝑅 ∈ Ring)
isabvd.2 (𝜑𝐹:𝐵⟶ℝ)
isabvd.3 (𝜑 → (𝐹0 ) = 0)
isabvd.4 ((𝜑𝑥𝐵𝑥0 ) → 0 < (𝐹𝑥))
isabvd.5 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
isabvd.6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
isabvd (𝜑𝐹𝐴)
Distinct variable groups:   𝑥,𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   · (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isabvd
StepHypRef Expression
1 isabvd.2 . . . . . 6 (𝜑𝐹:𝐵⟶ℝ)
2 isabvd.b . . . . . . 7 (𝜑𝐵 = (Base‘𝑅))
32feq2d 6484 . . . . . 6 (𝜑 → (𝐹:𝐵⟶ℝ ↔ 𝐹:(Base‘𝑅)⟶ℝ))
41, 3mpbid 235 . . . . 5 (𝜑𝐹:(Base‘𝑅)⟶ℝ)
54ffnd 6499 . . . 4 (𝜑𝐹 Fn (Base‘𝑅))
64ffvelrnda 6855 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ ℝ)
7 0le0 11810 . . . . . . . . . 10 0 ≤ 0
8 isabvd.z . . . . . . . . . . . 12 (𝜑0 = (0g𝑅))
98fveq2d 6672 . . . . . . . . . . 11 (𝜑 → (𝐹0 ) = (𝐹‘(0g𝑅)))
10 isabvd.3 . . . . . . . . . . 11 (𝜑 → (𝐹0 ) = 0)
119, 10eqtr3d 2775 . . . . . . . . . 10 (𝜑 → (𝐹‘(0g𝑅)) = 0)
127, 11breqtrrid 5065 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐹‘(0g𝑅)))
1312adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → 0 ≤ (𝐹‘(0g𝑅)))
14 fveq2 6668 . . . . . . . . 9 (𝑥 = (0g𝑅) → (𝐹𝑥) = (𝐹‘(0g𝑅)))
1514breq2d 5039 . . . . . . . 8 (𝑥 = (0g𝑅) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ (𝐹‘(0g𝑅))))
1613, 15syl5ibrcom 250 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = (0g𝑅) → 0 ≤ (𝐹𝑥)))
17 simp1 1137 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝜑)
18 simp2 1138 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥 ∈ (Base‘𝑅))
1923ad2ant1 1134 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝐵 = (Base‘𝑅))
2018, 19eleqtrrd 2836 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥𝐵)
21 simp3 1139 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥 ≠ (0g𝑅))
2283ad2ant1 1134 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 = (0g𝑅))
2321, 22neeqtrrd 3008 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 𝑥0 )
24 isabvd.4 . . . . . . . . . 10 ((𝜑𝑥𝐵𝑥0 ) → 0 < (𝐹𝑥))
2517, 20, 23, 24syl3anc 1372 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
26 0re 10714 . . . . . . . . . 10 0 ∈ ℝ
2763adant3 1133 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → (𝐹𝑥) ∈ ℝ)
28 ltle 10800 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (0 < (𝐹𝑥) → 0 ≤ (𝐹𝑥)))
2926, 27, 28sylancr 590 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → (0 < (𝐹𝑥) → 0 ≤ (𝐹𝑥)))
3025, 29mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 ≤ (𝐹𝑥))
31303expia 1122 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 ≠ (0g𝑅) → 0 ≤ (𝐹𝑥)))
3216, 31pm2.61dne 3020 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → 0 ≤ (𝐹𝑥))
33 elrege0 12921 . . . . . 6 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
346, 32, 33sylanbrc 586 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ (0[,)+∞))
3534ralrimiva 3096 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝐹𝑥) ∈ (0[,)+∞))
36 ffnfv 6886 . . . 4 (𝐹:(Base‘𝑅)⟶(0[,)+∞) ↔ (𝐹 Fn (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(𝐹𝑥) ∈ (0[,)+∞)))
375, 35, 36sylanbrc 586 . . 3 (𝜑𝐹:(Base‘𝑅)⟶(0[,)+∞))
3825gt0ne0d 11275 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → (𝐹𝑥) ≠ 0)
39383expia 1122 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 ≠ (0g𝑅) → (𝐹𝑥) ≠ 0))
4039necon4d 2958 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) = 0 → 𝑥 = (0g𝑅)))
4111adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐹‘(0g𝑅)) = 0)
42 fveqeq2 6677 . . . . . . 7 (𝑥 = (0g𝑅) → ((𝐹𝑥) = 0 ↔ (𝐹‘(0g𝑅)) = 0))
4341, 42syl5ibrcom 250 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = (0g𝑅) → (𝐹𝑥) = 0))
4440, 43impbid 215 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)))
45113ad2ant1 1134 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(0g𝑅)) = 0)
4645adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(0g𝑅)) = 0)
47 oveq1 7171 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥(.r𝑅)𝑦) = ((0g𝑅)(.r𝑅)𝑦))
48 isabvd.1 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
49483ad2ant1 1134 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
50 simp3 1139 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
51 eqid 2738 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
52 eqid 2738 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
53 eqid 2738 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
5451, 52, 53ringlz 19452 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑦) = (0g𝑅))
5549, 50, 54syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑦) = (0g𝑅))
5647, 55sylan9eqr 2795 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝑥(.r𝑅)𝑦) = (0g𝑅))
5756fveq2d 6672 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(0g𝑅)))
5814, 45sylan9eqr 2795 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹𝑥) = 0)
5958oveq1d 7179 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = (0 · (𝐹𝑦)))
6043ad2ant1 1134 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝐹:(Base‘𝑅)⟶ℝ)
6160, 50ffvelrnd 6856 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑦) ∈ ℝ)
6261recnd 10740 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑦) ∈ ℂ)
6362adantr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹𝑦) ∈ ℂ)
6463mul02d 10909 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (0 · (𝐹𝑦)) = 0)
6559, 64eqtrd 2773 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = 0)
6646, 57, 653eqtr4d 2783 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
6745adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(0g𝑅)) = 0)
68 oveq2 7172 . . . . . . . . . . . 12 (𝑦 = (0g𝑅) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑅)(0g𝑅)))
69 simp2 1138 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
7051, 52, 53ringrz 19453 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
7149, 69, 70syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
7268, 71sylan9eqr 2795 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝑥(.r𝑅)𝑦) = (0g𝑅))
7372fveq2d 6672 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(0g𝑅)))
74 fveq2 6668 . . . . . . . . . . . . 13 (𝑦 = (0g𝑅) → (𝐹𝑦) = (𝐹‘(0g𝑅)))
7574, 45sylan9eqr 2795 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹𝑦) = 0)
7675oveq2d 7180 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = ((𝐹𝑥) · 0))
7760, 69ffvelrnd 6856 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ ℝ)
7877recnd 10740 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹𝑥) ∈ ℂ)
7978adantr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹𝑥) ∈ ℂ)
8079mul01d 10910 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → ((𝐹𝑥) · 0) = 0)
8176, 80eqtrd 2773 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → ((𝐹𝑥) · (𝐹𝑦)) = 0)
8267, 73, 813eqtr4d 2783 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
83 simpl1 1192 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝜑)
84 isabvd.t . . . . . . . . . . . . 13 (𝜑· = (.r𝑅))
8583, 84syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → · = (.r𝑅))
8685oveqd 7181 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
8786fveq2d 6672 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝑥(.r𝑅)𝑦)))
88 simpl2 1193 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥 ∈ (Base‘𝑅))
8983, 2syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝐵 = (Base‘𝑅))
9088, 89eleqtrrd 2836 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥𝐵)
91 simprl 771 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥 ≠ (0g𝑅))
9283, 8syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 0 = (0g𝑅))
9391, 92neeqtrrd 3008 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑥0 )
94 simpl3 1194 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦 ∈ (Base‘𝑅))
9594, 89eleqtrrd 2836 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦𝐵)
96 simprr 773 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦 ≠ (0g𝑅))
9796, 92neeqtrrd 3008 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → 𝑦0 )
98 isabvd.5 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
9983, 90, 93, 95, 97, 98syl122anc 1380 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
10087, 99eqtr3d 2775 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
10166, 82, 100pm2.61da2ne 3022 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
102 oveq1 7171 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥(+g𝑅)𝑦) = ((0g𝑅)(+g𝑅)𝑦))
103 ringgrp 19414 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
10449, 103syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Grp)
105 eqid 2738 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
10651, 105, 53grplid 18244 . . . . . . . . . . . . 13 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑦) = 𝑦)
107104, 50, 106syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑦) = 𝑦)
108102, 107sylan9eqr 2795 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝑥(+g𝑅)𝑦) = 𝑦)
109108fveq2d 6672 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = (𝐹𝑦))
1107, 58breqtrrid 5065 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → 0 ≤ (𝐹𝑥))
11161, 77addge02d 11300 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ ((𝐹𝑥) + (𝐹𝑦))))
112111adantr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (0 ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ ((𝐹𝑥) + (𝐹𝑦))))
113110, 112mpbid 235 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹𝑦) ≤ ((𝐹𝑥) + (𝐹𝑦)))
114109, 113eqbrtrd 5049 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑥 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
115 oveq2 7172 . . . . . . . . . . . 12 (𝑦 = (0g𝑅) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑅)(0g𝑅)))
11651, 105, 53grprid 18245 . . . . . . . . . . . . 13 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(0g𝑅)) = 𝑥)
117104, 69, 116syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(0g𝑅)) = 𝑥)
118115, 117sylan9eqr 2795 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝑥(+g𝑅)𝑦) = 𝑥)
119118fveq2d 6672 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = (𝐹𝑥))
1207, 75breqtrrid 5065 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → 0 ≤ (𝐹𝑦))
12177, 61addge01d 11299 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (0 ≤ (𝐹𝑦) ↔ (𝐹𝑥) ≤ ((𝐹𝑥) + (𝐹𝑦))))
122121adantr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (0 ≤ (𝐹𝑦) ↔ (𝐹𝑥) ≤ ((𝐹𝑥) + (𝐹𝑦))))
123120, 122mpbid 235 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹𝑥) ≤ ((𝐹𝑥) + (𝐹𝑦)))
124119, 123eqbrtrd 5049 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑦 = (0g𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
125 isabvd.p . . . . . . . . . . . . 13 (𝜑+ = (+g𝑅))
12683, 125syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → + = (+g𝑅))
127126oveqd 7181 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
128127fveq2d 6672 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
129 isabvd.6 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
13083, 90, 93, 95, 97, 129syl122anc 1380 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
131128, 130eqbrtrrd 5051 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥 ≠ (0g𝑅) ∧ 𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
132114, 124, 131pm2.61da2ne 3022 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
133101, 132jca 515 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))
1341333expia 1122 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑦 ∈ (Base‘𝑅) → ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))
135134ralrimiv 3095 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))
13644, 135jca 515 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))
137136ralrimiva 3096 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))
138 eqid 2738 . . . . 5 (AbsVal‘𝑅) = (AbsVal‘𝑅)
139138, 51, 105, 52, 53isabv 19702 . . . 4 (𝑅 ∈ Ring → (𝐹 ∈ (AbsVal‘𝑅) ↔ (𝐹:(Base‘𝑅)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝑅)(((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
14048, 139syl 17 . . 3 (𝜑 → (𝐹 ∈ (AbsVal‘𝑅) ↔ (𝐹:(Base‘𝑅)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝑅)(((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
14137, 137, 140mpbir2and 713 . 2 (𝜑𝐹 ∈ (AbsVal‘𝑅))
142 isabvd.a . 2 (𝜑𝐴 = (AbsVal‘𝑅))
143141, 142eleqtrrd 2836 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wral 3053   class class class wbr 5027   Fn wfn 6328  wf 6329  cfv 6333  (class class class)co 7164  cc 10606  cr 10607  0cc0 10608   + caddc 10611   · cmul 10613  +∞cpnf 10743   < clt 10746  cle 10747  [,)cico 12816  Basecbs 16579  +gcplusg 16661  .rcmulr 16662  0gc0g 16809  Grpcgrp 18212  Ringcrg 19409  AbsValcabv 19699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-ico 12820  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-plusg 16674  df-0g 16811  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-grp 18215  df-minusg 18216  df-mgp 19352  df-ring 19411  df-abv 19700
This theorem is referenced by:  abvres  19722  abvtrivd  19723  absabv  20267  abvcxp  26343  padicabv  26358
  Copyright terms: Public domain W3C validator