Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihprrn Structured version   Visualization version   GIF version

Theorem dihprrn 39440
Description: The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014.)
Hypotheses
Ref Expression
dihprrn.h 𝐻 = (LHyp‘𝐾)
dihprrn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihprrn.v 𝑉 = (Base‘𝑈)
dihprrn.n 𝑁 = (LSpan‘𝑈)
dihprrn.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihprrn.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihprrn.x (𝜑𝑋𝑉)
dihprrn.y (𝜑𝑌𝑉)
Assertion
Ref Expression
dihprrn (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)

Proof of Theorem dihprrn
StepHypRef Expression
1 prcom 4668 . . . . . 6 {𝑋, 𝑌} = {𝑌, 𝑋}
2 preq2 4670 . . . . . 6 (𝑋 = (0g𝑈) → {𝑌, 𝑋} = {𝑌, (0g𝑈)})
31, 2eqtrid 2790 . . . . 5 (𝑋 = (0g𝑈) → {𝑋, 𝑌} = {𝑌, (0g𝑈)})
43fveq2d 6778 . . . 4 (𝑋 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, (0g𝑈)}))
5 dihprrn.v . . . . 5 𝑉 = (Base‘𝑈)
6 eqid 2738 . . . . 5 (0g𝑈) = (0g𝑈)
7 dihprrn.n . . . . 5 𝑁 = (LSpan‘𝑈)
8 dihprrn.h . . . . . 6 𝐻 = (LHyp‘𝐾)
9 dihprrn.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dihprrn.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
118, 9, 10dvhlmod 39124 . . . . 5 (𝜑𝑈 ∈ LMod)
12 dihprrn.y . . . . 5 (𝜑𝑌𝑉)
135, 6, 7, 11, 12lsppr0 20354 . . . 4 (𝜑 → (𝑁‘{𝑌, (0g𝑈)}) = (𝑁‘{𝑌}))
144, 13sylan9eqr 2800 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌}))
15 dihprrn.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
168, 9, 5, 7, 15dihlsprn 39345 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ ran 𝐼)
1710, 12, 16syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ ran 𝐼)
1817adantr 481 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑌}) ∈ ran 𝐼)
1914, 18eqeltrd 2839 . 2 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
20 preq2 4670 . . . . 5 (𝑌 = (0g𝑈) → {𝑋, 𝑌} = {𝑋, (0g𝑈)})
2120fveq2d 6778 . . . 4 (𝑌 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, (0g𝑈)}))
22 dihprrn.x . . . . 5 (𝜑𝑋𝑉)
235, 6, 7, 11, 22lsppr0 20354 . . . 4 (𝜑 → (𝑁‘{𝑋, (0g𝑈)}) = (𝑁‘{𝑋}))
2421, 23sylan9eqr 2800 . . 3 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋}))
258, 9, 5, 7, 15dihlsprn 39345 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ ran 𝐼)
2610, 22, 25syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ ran 𝐼)
2726adantr 481 . . 3 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋}) ∈ ran 𝐼)
2824, 27eqeltrd 2839 . 2 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
2910adantr 481 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3022adantr 481 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋𝑉)
3112adantr 481 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌𝑉)
32 simprl 768 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
33 simprr 770 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
348, 9, 5, 7, 15, 29, 30, 31, 6, 32, 33dihprrnlem2 39439 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
3519, 28, 34pm2.61da2ne 3033 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  {csn 4561  {cpr 4563  ran crn 5590  cfv 6433  Basecbs 16912  0gc0g 17150  LSpanclspn 20233  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  DIsoHcdih 39242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757  df-tendo 38769  df-edring 38771  df-dveca 39017  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362  df-djh 39409
This theorem is referenced by:  djhlsmat  39441  lclkrlem2v  39542  lcfrlem23  39579
  Copyright terms: Public domain W3C validator