Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihprrn Structured version   Visualization version   GIF version

Theorem dihprrn 39367
Description: The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014.)
Hypotheses
Ref Expression
dihprrn.h 𝐻 = (LHyp‘𝐾)
dihprrn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihprrn.v 𝑉 = (Base‘𝑈)
dihprrn.n 𝑁 = (LSpan‘𝑈)
dihprrn.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihprrn.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihprrn.x (𝜑𝑋𝑉)
dihprrn.y (𝜑𝑌𝑉)
Assertion
Ref Expression
dihprrn (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)

Proof of Theorem dihprrn
StepHypRef Expression
1 prcom 4665 . . . . . 6 {𝑋, 𝑌} = {𝑌, 𝑋}
2 preq2 4667 . . . . . 6 (𝑋 = (0g𝑈) → {𝑌, 𝑋} = {𝑌, (0g𝑈)})
31, 2syl5eq 2791 . . . . 5 (𝑋 = (0g𝑈) → {𝑋, 𝑌} = {𝑌, (0g𝑈)})
43fveq2d 6760 . . . 4 (𝑋 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, (0g𝑈)}))
5 dihprrn.v . . . . 5 𝑉 = (Base‘𝑈)
6 eqid 2738 . . . . 5 (0g𝑈) = (0g𝑈)
7 dihprrn.n . . . . 5 𝑁 = (LSpan‘𝑈)
8 dihprrn.h . . . . . 6 𝐻 = (LHyp‘𝐾)
9 dihprrn.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dihprrn.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
118, 9, 10dvhlmod 39051 . . . . 5 (𝜑𝑈 ∈ LMod)
12 dihprrn.y . . . . 5 (𝜑𝑌𝑉)
135, 6, 7, 11, 12lsppr0 20269 . . . 4 (𝜑 → (𝑁‘{𝑌, (0g𝑈)}) = (𝑁‘{𝑌}))
144, 13sylan9eqr 2801 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌}))
15 dihprrn.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
168, 9, 5, 7, 15dihlsprn 39272 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ ran 𝐼)
1710, 12, 16syl2anc 583 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ ran 𝐼)
1817adantr 480 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑌}) ∈ ran 𝐼)
1914, 18eqeltrd 2839 . 2 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
20 preq2 4667 . . . . 5 (𝑌 = (0g𝑈) → {𝑋, 𝑌} = {𝑋, (0g𝑈)})
2120fveq2d 6760 . . . 4 (𝑌 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, (0g𝑈)}))
22 dihprrn.x . . . . 5 (𝜑𝑋𝑉)
235, 6, 7, 11, 22lsppr0 20269 . . . 4 (𝜑 → (𝑁‘{𝑋, (0g𝑈)}) = (𝑁‘{𝑋}))
2421, 23sylan9eqr 2801 . . 3 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋}))
258, 9, 5, 7, 15dihlsprn 39272 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ ran 𝐼)
2610, 22, 25syl2anc 583 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ ran 𝐼)
2726adantr 480 . . 3 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋}) ∈ ran 𝐼)
2824, 27eqeltrd 2839 . 2 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
2910adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3022adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋𝑉)
3112adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌𝑉)
32 simprl 767 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
33 simprr 769 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
348, 9, 5, 7, 15, 29, 30, 31, 6, 32, 33dihprrnlem2 39366 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
3519, 28, 34pm2.61da2ne 3032 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  {csn 4558  {cpr 4560  ran crn 5581  cfv 6418  Basecbs 16840  0gc0g 17067  LSpanclspn 20148  HLchlt 37291  LHypclh 37925  DVecHcdvh 39019  DIsoHcdih 39169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-undef 8060  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-0g 17069  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lsatoms 36917  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-tgrp 38684  df-tendo 38696  df-edring 38698  df-dveca 38944  df-disoa 38970  df-dvech 39020  df-dib 39080  df-dic 39114  df-dih 39170  df-doch 39289  df-djh 39336
This theorem is referenced by:  djhlsmat  39368  lclkrlem2v  39469  lcfrlem23  39506
  Copyright terms: Public domain W3C validator