Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihprrn Structured version   Visualization version   GIF version

Theorem dihprrn 40823
Description: The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014.)
Hypotheses
Ref Expression
dihprrn.h 𝐻 = (LHyp‘𝐾)
dihprrn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihprrn.v 𝑉 = (Base‘𝑈)
dihprrn.n 𝑁 = (LSpan‘𝑈)
dihprrn.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihprrn.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihprrn.x (𝜑𝑋𝑉)
dihprrn.y (𝜑𝑌𝑉)
Assertion
Ref Expression
dihprrn (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)

Proof of Theorem dihprrn
StepHypRef Expression
1 prcom 4732 . . . . . 6 {𝑋, 𝑌} = {𝑌, 𝑋}
2 preq2 4734 . . . . . 6 (𝑋 = (0g𝑈) → {𝑌, 𝑋} = {𝑌, (0g𝑈)})
31, 2eqtrid 2779 . . . . 5 (𝑋 = (0g𝑈) → {𝑋, 𝑌} = {𝑌, (0g𝑈)})
43fveq2d 6895 . . . 4 (𝑋 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, (0g𝑈)}))
5 dihprrn.v . . . . 5 𝑉 = (Base‘𝑈)
6 eqid 2727 . . . . 5 (0g𝑈) = (0g𝑈)
7 dihprrn.n . . . . 5 𝑁 = (LSpan‘𝑈)
8 dihprrn.h . . . . . 6 𝐻 = (LHyp‘𝐾)
9 dihprrn.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dihprrn.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
118, 9, 10dvhlmod 40507 . . . . 5 (𝜑𝑈 ∈ LMod)
12 dihprrn.y . . . . 5 (𝜑𝑌𝑉)
135, 6, 7, 11, 12lsppr0 20959 . . . 4 (𝜑 → (𝑁‘{𝑌, (0g𝑈)}) = (𝑁‘{𝑌}))
144, 13sylan9eqr 2789 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌}))
15 dihprrn.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
168, 9, 5, 7, 15dihlsprn 40728 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ ran 𝐼)
1710, 12, 16syl2anc 583 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ ran 𝐼)
1817adantr 480 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑌}) ∈ ran 𝐼)
1914, 18eqeltrd 2828 . 2 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
20 preq2 4734 . . . . 5 (𝑌 = (0g𝑈) → {𝑋, 𝑌} = {𝑋, (0g𝑈)})
2120fveq2d 6895 . . . 4 (𝑌 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, (0g𝑈)}))
22 dihprrn.x . . . . 5 (𝜑𝑋𝑉)
235, 6, 7, 11, 22lsppr0 20959 . . . 4 (𝜑 → (𝑁‘{𝑋, (0g𝑈)}) = (𝑁‘{𝑋}))
2421, 23sylan9eqr 2789 . . 3 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋}))
258, 9, 5, 7, 15dihlsprn 40728 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ ran 𝐼)
2610, 22, 25syl2anc 583 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ ran 𝐼)
2726adantr 480 . . 3 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋}) ∈ ran 𝐼)
2824, 27eqeltrd 2828 . 2 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
2910adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3022adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋𝑉)
3112adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌𝑉)
32 simprl 770 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
33 simprr 772 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
348, 9, 5, 7, 15, 29, 30, 31, 6, 32, 33dihprrnlem2 40822 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
3519, 28, 34pm2.61da2ne 3025 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2935  {csn 4624  {cpr 4626  ran crn 5673  cfv 6542  Basecbs 17165  0gc0g 17406  LSpanclspn 20837  HLchlt 38746  LHypclh 39381  DVecHcdvh 40475  DIsoHcdih 40625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-riotaBAD 38349
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-tpos 8223  df-undef 8270  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-n0 12489  df-z 12575  df-uz 12839  df-fz 13503  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-sca 17234  df-vsca 17235  df-0g 17408  df-proset 18272  df-poset 18290  df-plt 18307  df-lub 18323  df-glb 18324  df-join 18325  df-meet 18326  df-p0 18402  df-p1 18403  df-lat 18409  df-clat 18476  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-submnd 18726  df-grp 18878  df-minusg 18879  df-sbg 18880  df-subg 19062  df-cntz 19252  df-lsm 19575  df-cmn 19721  df-abl 19722  df-mgp 20059  df-rng 20077  df-ur 20106  df-ring 20159  df-oppr 20255  df-dvdsr 20278  df-unit 20279  df-invr 20309  df-dvr 20322  df-drng 20608  df-lmod 20727  df-lss 20798  df-lsp 20838  df-lvec 20970  df-lsatoms 38372  df-oposet 38572  df-ol 38574  df-oml 38575  df-covers 38662  df-ats 38663  df-atl 38694  df-cvlat 38718  df-hlat 38747  df-llines 38895  df-lplanes 38896  df-lvols 38897  df-lines 38898  df-psubsp 38900  df-pmap 38901  df-padd 39193  df-lhyp 39385  df-laut 39386  df-ldil 39501  df-ltrn 39502  df-trl 39556  df-tgrp 40140  df-tendo 40152  df-edring 40154  df-dveca 40400  df-disoa 40426  df-dvech 40476  df-dib 40536  df-dic 40570  df-dih 40626  df-doch 40745  df-djh 40792
This theorem is referenced by:  djhlsmat  40824  lclkrlem2v  40925  lcfrlem23  40962
  Copyright terms: Public domain W3C validator