Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihprrn Structured version   Visualization version   GIF version

Theorem dihprrn 41428
Description: The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014.)
Hypotheses
Ref Expression
dihprrn.h 𝐻 = (LHyp‘𝐾)
dihprrn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihprrn.v 𝑉 = (Base‘𝑈)
dihprrn.n 𝑁 = (LSpan‘𝑈)
dihprrn.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihprrn.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihprrn.x (𝜑𝑋𝑉)
dihprrn.y (𝜑𝑌𝑉)
Assertion
Ref Expression
dihprrn (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)

Proof of Theorem dihprrn
StepHypRef Expression
1 prcom 4732 . . . . . 6 {𝑋, 𝑌} = {𝑌, 𝑋}
2 preq2 4734 . . . . . 6 (𝑋 = (0g𝑈) → {𝑌, 𝑋} = {𝑌, (0g𝑈)})
31, 2eqtrid 2789 . . . . 5 (𝑋 = (0g𝑈) → {𝑋, 𝑌} = {𝑌, (0g𝑈)})
43fveq2d 6910 . . . 4 (𝑋 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, (0g𝑈)}))
5 dihprrn.v . . . . 5 𝑉 = (Base‘𝑈)
6 eqid 2737 . . . . 5 (0g𝑈) = (0g𝑈)
7 dihprrn.n . . . . 5 𝑁 = (LSpan‘𝑈)
8 dihprrn.h . . . . . 6 𝐻 = (LHyp‘𝐾)
9 dihprrn.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dihprrn.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
118, 9, 10dvhlmod 41112 . . . . 5 (𝜑𝑈 ∈ LMod)
12 dihprrn.y . . . . 5 (𝜑𝑌𝑉)
135, 6, 7, 11, 12lsppr0 21091 . . . 4 (𝜑 → (𝑁‘{𝑌, (0g𝑈)}) = (𝑁‘{𝑌}))
144, 13sylan9eqr 2799 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌}))
15 dihprrn.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
168, 9, 5, 7, 15dihlsprn 41333 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ ran 𝐼)
1710, 12, 16syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ ran 𝐼)
1817adantr 480 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑌}) ∈ ran 𝐼)
1914, 18eqeltrd 2841 . 2 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
20 preq2 4734 . . . . 5 (𝑌 = (0g𝑈) → {𝑋, 𝑌} = {𝑋, (0g𝑈)})
2120fveq2d 6910 . . . 4 (𝑌 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, (0g𝑈)}))
22 dihprrn.x . . . . 5 (𝜑𝑋𝑉)
235, 6, 7, 11, 22lsppr0 21091 . . . 4 (𝜑 → (𝑁‘{𝑋, (0g𝑈)}) = (𝑁‘{𝑋}))
2421, 23sylan9eqr 2799 . . 3 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋}))
258, 9, 5, 7, 15dihlsprn 41333 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ ran 𝐼)
2610, 22, 25syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ ran 𝐼)
2726adantr 480 . . 3 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋}) ∈ ran 𝐼)
2824, 27eqeltrd 2841 . 2 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
2910adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3022adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋𝑉)
3112adantr 480 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌𝑉)
32 simprl 771 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
33 simprr 773 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
348, 9, 5, 7, 15, 29, 30, 31, 6, 32, 33dihprrnlem2 41427 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
3519, 28, 34pm2.61da2ne 3030 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  {csn 4626  {cpr 4628  ran crn 5686  cfv 6561  Basecbs 17247  0gc0g 17484  LSpanclspn 20969  HLchlt 39351  LHypclh 39986  DVecHcdvh 41080  DIsoHcdih 41230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-undef 8298  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-lsatoms 38977  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tgrp 40745  df-tendo 40757  df-edring 40759  df-dveca 41005  df-disoa 41031  df-dvech 41081  df-dib 41141  df-dic 41175  df-dih 41231  df-doch 41350  df-djh 41397
This theorem is referenced by:  djhlsmat  41429  lclkrlem2v  41530  lcfrlem23  41567
  Copyright terms: Public domain W3C validator