Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim Structured version   Visualization version   GIF version

Theorem dvh3dim 39072
Description: There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
Assertion
Ref Expression
dvh3dim (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh3dim
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.y . . . . 5 (𝜑𝑌𝑉)
71, 2, 3, 4, 5, 6dvh2dim 39071 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌}))
87adantr 484 . . 3 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌}))
9 prcom 4620 . . . . . . . . 9 {𝑋, 𝑌} = {𝑌, 𝑋}
10 preq2 4622 . . . . . . . . 9 (𝑋 = (0g𝑈) → {𝑌, 𝑋} = {𝑌, (0g𝑈)})
119, 10syl5eq 2785 . . . . . . . 8 (𝑋 = (0g𝑈) → {𝑋, 𝑌} = {𝑌, (0g𝑈)})
1211fveq2d 6672 . . . . . . 7 (𝑋 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, (0g𝑈)}))
13 eqid 2738 . . . . . . . 8 (0g𝑈) = (0g𝑈)
141, 2, 5dvhlmod 38736 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
153, 13, 4, 14, 6lsppr0 19976 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, (0g𝑈)}) = (𝑁‘{𝑌}))
1612, 15sylan9eqr 2795 . . . . . 6 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌}))
1716eleq2d 2818 . . . . 5 ((𝜑𝑋 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑌})))
1817notbid 321 . . . 4 ((𝜑𝑋 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑌})))
1918rexbidv 3206 . . 3 ((𝜑𝑋 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌})))
208, 19mpbird 260 . 2 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
21 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
221, 2, 3, 4, 5, 21dvh2dim 39071 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
2322adantr 484 . . 3 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
24 preq2 4622 . . . . . . . 8 (𝑌 = (0g𝑈) → {𝑋, 𝑌} = {𝑋, (0g𝑈)})
2524fveq2d 6672 . . . . . . 7 (𝑌 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, (0g𝑈)}))
263, 13, 4, 14, 21lsppr0 19976 . . . . . . 7 (𝜑 → (𝑁‘{𝑋, (0g𝑈)}) = (𝑁‘{𝑋}))
2725, 26sylan9eqr 2795 . . . . . 6 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋}))
2827eleq2d 2818 . . . . 5 ((𝜑𝑌 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑋})))
2928notbid 321 . . . 4 ((𝜑𝑌 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋})))
3029rexbidv 3206 . . 3 ((𝜑𝑌 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})))
3123, 30mpbird 260 . 2 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
325adantr 484 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3321adantr 484 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋𝑉)
346adantr 484 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌𝑉)
35 simprl 771 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
36 simprr 773 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
371, 2, 3, 4, 32, 33, 34, 13, 35, 36dvhdimlem 39070 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
3820, 31, 37pm2.61da2ne 3022 1 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2113  wne 2934  wrex 3054  {csn 4513  {cpr 4515  cfv 6333  Basecbs 16579  0gc0g 16809  LSpanclspn 19855  HLchlt 36976  LHypclh 37610  DVecHcdvh 38704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-riotaBAD 36579
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-tpos 7914  df-undef 7961  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-n0 11970  df-z 12056  df-uz 12318  df-fz 12975  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-sca 16677  df-vsca 16678  df-0g 16811  df-proset 17647  df-poset 17665  df-plt 17677  df-lub 17693  df-glb 17694  df-join 17695  df-meet 17696  df-p0 17758  df-p1 17759  df-lat 17765  df-clat 17827  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-submnd 18066  df-grp 18215  df-minusg 18216  df-sbg 18217  df-subg 18387  df-cntz 18558  df-lsm 18872  df-cmn 19019  df-abl 19020  df-mgp 19352  df-ur 19364  df-ring 19411  df-oppr 19488  df-dvdsr 19506  df-unit 19507  df-invr 19537  df-dvr 19548  df-drng 19616  df-lmod 19748  df-lss 19816  df-lsp 19856  df-lvec 19987  df-lsatoms 36602  df-oposet 36802  df-ol 36804  df-oml 36805  df-covers 36892  df-ats 36893  df-atl 36924  df-cvlat 36948  df-hlat 36977  df-llines 37124  df-lplanes 37125  df-lvols 37126  df-lines 37127  df-psubsp 37129  df-pmap 37130  df-padd 37422  df-lhyp 37614  df-laut 37615  df-ldil 37730  df-ltrn 37731  df-trl 37785  df-tgrp 38369  df-tendo 38381  df-edring 38383  df-dveca 38629  df-disoa 38655  df-dvech 38705  df-dib 38765  df-dic 38799  df-dih 38855  df-doch 38974  df-djh 39021
This theorem is referenced by:  dvh4dimN  39073  dvh3dim2  39074  mapdh6iN  39370  mapdh8e  39410  mapdh9a  39415  mapdh9aOLDN  39416  hdmap1l6i  39444  hdmapval0  39459  hdmapval3N  39464  hdmap10lem  39465  hdmap11lem2  39468  hdmap14lem11  39504
  Copyright terms: Public domain W3C validator