| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvh3dim | Structured version Visualization version GIF version | ||
| Description: There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015.) |
| Ref | Expression |
|---|---|
| dvh3dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvh3dim.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dvh3dim.v | ⊢ 𝑉 = (Base‘𝑈) |
| dvh3dim.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| dvh3dim.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dvh3dim.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| dvh3dim.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dvh3dim | ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvh3dim.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvh3dim.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | dvh3dim.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | dvh3dim.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 5 | dvh3dim.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | dvh3dim.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 7 | 1, 2, 3, 4, 5, 6 | dvh2dim 41444 | . . . 4 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌})) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌})) |
| 9 | prcom 4686 | . . . . . . . . 9 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
| 10 | preq2 4688 | . . . . . . . . 9 ⊢ (𝑋 = (0g‘𝑈) → {𝑌, 𝑋} = {𝑌, (0g‘𝑈)}) | |
| 11 | 9, 10 | eqtrid 2776 | . . . . . . . 8 ⊢ (𝑋 = (0g‘𝑈) → {𝑋, 𝑌} = {𝑌, (0g‘𝑈)}) |
| 12 | 11 | fveq2d 6830 | . . . . . . 7 ⊢ (𝑋 = (0g‘𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, (0g‘𝑈)})) |
| 13 | eqid 2729 | . . . . . . . 8 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 14 | 1, 2, 5 | dvhlmod 41109 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 15 | 3, 13, 4, 14, 6 | lsppr0 21015 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌, (0g‘𝑈)}) = (𝑁‘{𝑌})) |
| 16 | 12, 15 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌})) |
| 17 | 16 | eleq2d 2814 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑌}))) |
| 18 | 17 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑌}))) |
| 19 | 18 | rexbidv 3153 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌}))) |
| 20 | 8, 19 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 21 | dvh3dim.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 22 | 1, 2, 3, 4, 5, 21 | dvh2dim 41444 | . . . 4 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})) |
| 24 | preq2 4688 | . . . . . . . 8 ⊢ (𝑌 = (0g‘𝑈) → {𝑋, 𝑌} = {𝑋, (0g‘𝑈)}) | |
| 25 | 24 | fveq2d 6830 | . . . . . . 7 ⊢ (𝑌 = (0g‘𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, (0g‘𝑈)})) |
| 26 | 3, 13, 4, 14, 21 | lsppr0 21015 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋, (0g‘𝑈)}) = (𝑁‘{𝑋})) |
| 27 | 25, 26 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋})) |
| 28 | 27 | eleq2d 2814 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑋}))) |
| 29 | 28 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋}))) |
| 30 | 29 | rexbidv 3153 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))) |
| 31 | 23, 30 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 32 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 33 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑋 ∈ 𝑉) |
| 34 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑌 ∈ 𝑉) |
| 35 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑋 ≠ (0g‘𝑈)) | |
| 36 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑌 ≠ (0g‘𝑈)) | |
| 37 | 1, 2, 3, 4, 32, 33, 34, 13, 35, 36 | dvhdimlem 41443 | . 2 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 38 | 20, 31, 37 | pm2.61da2ne 3013 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {csn 4579 {cpr 4581 ‘cfv 6486 Basecbs 17139 0gc0g 17362 LSpanclspn 20893 HLchlt 39348 LHypclh 39983 DVecHcdvh 41077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38951 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-n0 12404 df-z 12491 df-uz 12755 df-fz 13430 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-0g 17364 df-proset 18219 df-poset 18238 df-plt 18253 df-lub 18269 df-glb 18270 df-join 18271 df-meet 18272 df-p0 18348 df-p1 18349 df-lat 18357 df-clat 18424 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-grp 18834 df-minusg 18835 df-sbg 18836 df-subg 19021 df-cntz 19215 df-lsm 19534 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-oppr 20241 df-dvdsr 20261 df-unit 20262 df-invr 20292 df-dvr 20305 df-drng 20635 df-lmod 20784 df-lss 20854 df-lsp 20894 df-lvec 21026 df-lsatoms 38974 df-oposet 39174 df-ol 39176 df-oml 39177 df-covers 39264 df-ats 39265 df-atl 39296 df-cvlat 39320 df-hlat 39349 df-llines 39497 df-lplanes 39498 df-lvols 39499 df-lines 39500 df-psubsp 39502 df-pmap 39503 df-padd 39795 df-lhyp 39987 df-laut 39988 df-ldil 40103 df-ltrn 40104 df-trl 40158 df-tgrp 40742 df-tendo 40754 df-edring 40756 df-dveca 41002 df-disoa 41028 df-dvech 41078 df-dib 41138 df-dic 41172 df-dih 41228 df-doch 41347 df-djh 41394 |
| This theorem is referenced by: dvh4dimN 41446 dvh3dim2 41447 mapdh6iN 41743 mapdh8e 41783 mapdh9a 41788 mapdh9aOLDN 41789 hdmap1l6i 41817 hdmapval0 41832 hdmapval3N 41837 hdmap10lem 41838 hdmap11lem2 41841 hdmap14lem11 41877 |
| Copyright terms: Public domain | W3C validator |