| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvh3dim | Structured version Visualization version GIF version | ||
| Description: There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015.) |
| Ref | Expression |
|---|---|
| dvh3dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvh3dim.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dvh3dim.v | ⊢ 𝑉 = (Base‘𝑈) |
| dvh3dim.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| dvh3dim.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dvh3dim.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| dvh3dim.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dvh3dim | ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvh3dim.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvh3dim.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | dvh3dim.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | dvh3dim.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 5 | dvh3dim.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | dvh3dim.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 7 | 1, 2, 3, 4, 5, 6 | dvh2dim 41422 | . . . 4 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌})) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌})) |
| 9 | prcom 4712 | . . . . . . . . 9 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
| 10 | preq2 4714 | . . . . . . . . 9 ⊢ (𝑋 = (0g‘𝑈) → {𝑌, 𝑋} = {𝑌, (0g‘𝑈)}) | |
| 11 | 9, 10 | eqtrid 2781 | . . . . . . . 8 ⊢ (𝑋 = (0g‘𝑈) → {𝑋, 𝑌} = {𝑌, (0g‘𝑈)}) |
| 12 | 11 | fveq2d 6890 | . . . . . . 7 ⊢ (𝑋 = (0g‘𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, (0g‘𝑈)})) |
| 13 | eqid 2734 | . . . . . . . 8 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 14 | 1, 2, 5 | dvhlmod 41087 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 15 | 3, 13, 4, 14, 6 | lsppr0 21060 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌, (0g‘𝑈)}) = (𝑁‘{𝑌})) |
| 16 | 12, 15 | sylan9eqr 2791 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌})) |
| 17 | 16 | eleq2d 2819 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑌}))) |
| 18 | 17 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑌}))) |
| 19 | 18 | rexbidv 3166 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌}))) |
| 20 | 8, 19 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 21 | dvh3dim.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 22 | 1, 2, 3, 4, 5, 21 | dvh2dim 41422 | . . . 4 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})) |
| 24 | preq2 4714 | . . . . . . . 8 ⊢ (𝑌 = (0g‘𝑈) → {𝑋, 𝑌} = {𝑋, (0g‘𝑈)}) | |
| 25 | 24 | fveq2d 6890 | . . . . . . 7 ⊢ (𝑌 = (0g‘𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, (0g‘𝑈)})) |
| 26 | 3, 13, 4, 14, 21 | lsppr0 21060 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋, (0g‘𝑈)}) = (𝑁‘{𝑋})) |
| 27 | 25, 26 | sylan9eqr 2791 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋})) |
| 28 | 27 | eleq2d 2819 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑋}))) |
| 29 | 28 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋}))) |
| 30 | 29 | rexbidv 3166 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))) |
| 31 | 23, 30 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 32 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 33 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑋 ∈ 𝑉) |
| 34 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑌 ∈ 𝑉) |
| 35 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑋 ≠ (0g‘𝑈)) | |
| 36 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑌 ≠ (0g‘𝑈)) | |
| 37 | 1, 2, 3, 4, 32, 33, 34, 13, 35, 36 | dvhdimlem 41421 | . 2 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 38 | 20, 31, 37 | pm2.61da2ne 3019 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {csn 4606 {cpr 4608 ‘cfv 6541 Basecbs 17230 0gc0g 17456 LSpanclspn 20938 HLchlt 39326 LHypclh 39961 DVecHcdvh 41055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-riotaBAD 38929 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-undef 8280 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-0g 17458 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19623 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-dvr 20370 df-drng 20700 df-lmod 20829 df-lss 20899 df-lsp 20939 df-lvec 21071 df-lsatoms 38952 df-oposet 39152 df-ol 39154 df-oml 39155 df-covers 39242 df-ats 39243 df-atl 39274 df-cvlat 39298 df-hlat 39327 df-llines 39475 df-lplanes 39476 df-lvols 39477 df-lines 39478 df-psubsp 39480 df-pmap 39481 df-padd 39773 df-lhyp 39965 df-laut 39966 df-ldil 40081 df-ltrn 40082 df-trl 40136 df-tgrp 40720 df-tendo 40732 df-edring 40734 df-dveca 40980 df-disoa 41006 df-dvech 41056 df-dib 41116 df-dic 41150 df-dih 41206 df-doch 41325 df-djh 41372 |
| This theorem is referenced by: dvh4dimN 41424 dvh3dim2 41425 mapdh6iN 41721 mapdh8e 41761 mapdh9a 41766 mapdh9aOLDN 41767 hdmap1l6i 41795 hdmapval0 41810 hdmapval3N 41815 hdmap10lem 41816 hdmap11lem2 41819 hdmap14lem11 41855 |
| Copyright terms: Public domain | W3C validator |