Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim Structured version   Visualization version   GIF version

Theorem dvh3dim 38581
Description: There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
Assertion
Ref Expression
dvh3dim (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh3dim
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.y . . . . 5 (𝜑𝑌𝑉)
71, 2, 3, 4, 5, 6dvh2dim 38580 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌}))
87adantr 483 . . 3 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌}))
9 prcom 4667 . . . . . . . . 9 {𝑋, 𝑌} = {𝑌, 𝑋}
10 preq2 4669 . . . . . . . . 9 (𝑋 = (0g𝑈) → {𝑌, 𝑋} = {𝑌, (0g𝑈)})
119, 10syl5eq 2868 . . . . . . . 8 (𝑋 = (0g𝑈) → {𝑋, 𝑌} = {𝑌, (0g𝑈)})
1211fveq2d 6673 . . . . . . 7 (𝑋 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, (0g𝑈)}))
13 eqid 2821 . . . . . . . 8 (0g𝑈) = (0g𝑈)
141, 2, 5dvhlmod 38245 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
153, 13, 4, 14, 6lsppr0 19863 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, (0g𝑈)}) = (𝑁‘{𝑌}))
1612, 15sylan9eqr 2878 . . . . . 6 ((𝜑𝑋 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌}))
1716eleq2d 2898 . . . . 5 ((𝜑𝑋 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑌})))
1817notbid 320 . . . 4 ((𝜑𝑋 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑌})))
1918rexbidv 3297 . . 3 ((𝜑𝑋 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑌})))
208, 19mpbird 259 . 2 ((𝜑𝑋 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
21 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
221, 2, 3, 4, 5, 21dvh2dim 38580 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
2322adantr 483 . . 3 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}))
24 preq2 4669 . . . . . . . 8 (𝑌 = (0g𝑈) → {𝑋, 𝑌} = {𝑋, (0g𝑈)})
2524fveq2d 6673 . . . . . . 7 (𝑌 = (0g𝑈) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋, (0g𝑈)}))
263, 13, 4, 14, 21lsppr0 19863 . . . . . . 7 (𝜑 → (𝑁‘{𝑋, (0g𝑈)}) = (𝑁‘{𝑋}))
2725, 26sylan9eqr 2878 . . . . . 6 ((𝜑𝑌 = (0g𝑈)) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑋}))
2827eleq2d 2898 . . . . 5 ((𝜑𝑌 = (0g𝑈)) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑧 ∈ (𝑁‘{𝑋})))
2928notbid 320 . . . 4 ((𝜑𝑌 = (0g𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋})))
3029rexbidv 3297 . . 3 ((𝜑𝑌 = (0g𝑈)) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})))
3123, 30mpbird 259 . 2 ((𝜑𝑌 = (0g𝑈)) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
325adantr 483 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3321adantr 483 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋𝑉)
346adantr 483 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌𝑉)
35 simprl 769 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
36 simprr 771 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
371, 2, 3, 4, 32, 33, 34, 13, 35, 36dvhdimlem 38579 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
3820, 31, 37pm2.61da2ne 3105 1 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wrex 3139  {csn 4566  {cpr 4568  cfv 6354  Basecbs 16482  0gc0g 16712  LSpanclspn 19742  HLchlt 36485  LHypclh 37119  DVecHcdvh 38213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-riotaBAD 36088
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-undef 7938  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-0g 16714  df-proset 17537  df-poset 17555  df-plt 17567  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-p0 17648  df-p1 17649  df-lat 17655  df-clat 17717  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18275  df-cntz 18446  df-lsm 18760  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19503  df-lmod 19635  df-lss 19703  df-lsp 19743  df-lvec 19874  df-lsatoms 36111  df-oposet 36311  df-ol 36313  df-oml 36314  df-covers 36401  df-ats 36402  df-atl 36433  df-cvlat 36457  df-hlat 36486  df-llines 36633  df-lplanes 36634  df-lvols 36635  df-lines 36636  df-psubsp 36638  df-pmap 36639  df-padd 36931  df-lhyp 37123  df-laut 37124  df-ldil 37239  df-ltrn 37240  df-trl 37294  df-tgrp 37878  df-tendo 37890  df-edring 37892  df-dveca 38138  df-disoa 38164  df-dvech 38214  df-dib 38274  df-dic 38308  df-dih 38364  df-doch 38483  df-djh 38530
This theorem is referenced by:  dvh4dimN  38582  dvh3dim2  38583  mapdh6iN  38879  mapdh8e  38919  mapdh9a  38924  mapdh9aOLDN  38925  hdmap1l6i  38953  hdmapval0  38968  hdmapval3N  38973  hdmap10lem  38974  hdmap11lem2  38977  hdmap14lem11  39013
  Copyright terms: Public domain W3C validator